ﻻ يوجد ملخص باللغة العربية
Graph convolutional networks (GCNs) have recently enabled a popular class of algorithms for collaborative filtering (CF). Nevertheless, the theoretical underpinnings of their empirical successes remain elusive. In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing. By identifying the critical role of smoothness, a key concept in graph signal processing, we develop a unified graph convolution-based framework for CF. We prove that many existing CF methods are special cases of this framework, including the neighborhood-based methods, low-rank matrix factorization, linear auto-encoders, and LightGCN, corresponding to different low-pass filters. Based on our framework, we then present a simple and computationally efficient CF baseline, which we shall refer to as Graph Filter based Collaborative Filtering (GF-CF). Given an implicit feedback matrix, GF-CF can be obtained in a closed form instead of expensive training with back-propagation. Experiments will show that GF-CF achieves competitive or better performance against deep learning-based methods on three well-known datasets, notably with a $70%$ performance gain over LightGCN on the Amazon-book dataset.
Recently, Graph Convolution Network (GCN) based methods have achieved outstanding performance for recommendation. These methods embed users and items in Euclidean space, and perform graph convolution on user-item interaction graphs. However, real-wor
The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have priv
In this paper, we describe an embedding-based entity recommendation framework for Wikipedia that organizes Wikipedia into a collection of graphs layered on top of each other, learns complementary entity representations from their topology and content
Side information of items, e.g., images and text description, has shown to be effective in contributing to accurate recommendations. Inspired by the recent success of pre-training models on natural language and images, we propose a pre-training strat
The problem of session-aware recommendation aims to predict users next click based on their current session and historical sessions. Existing session-aware recommendation methods have defects in capturing complex item transition relationships. Other