ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-training Graph Transformer with Multimodal Side Information for Recommendation

151   0   0.0 ( 0 )
 نشر من قبل Yong Liu Stephen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Side information of items, e.g., images and text description, has shown to be effective in contributing to accurate recommendations. Inspired by the recent success of pre-training models on natural language and images, we propose a pre-training strategy to learn item representations by considering both item side information and their relationships. We relate items by common user activities, e.g., co-purchase, and construct a homogeneous item graph. This graph provides a unified view of item relations and their associated side information in multimodality. We develop a novel sampling algorithm named MCNSampling to select contextual neighbors for each item. The proposed Pre-trained Multimodal Graph Transformer (PMGT) learns item representations with two objectives: 1) graph structure reconstruction, and 2) masked node feature reconstruction. Experimental results on real datasets demonstrate that the proposed PMGT model effectively exploits the multimodality side information to achieve better accuracies in downstream tasks including item recommendation, item classification, and click-through ratio prediction. We also report a case study of testing the proposed PMGT model in an online setting with 600 thousand users.

قيم البحث

اقرأ أيضاً

Leveraging the side information associated with entities (i.e. users and items) to enhance the performance of recommendation systems has been widely recognized as an important modelling dimension. While many existing approaches focus on the integrati on scheme to incorporate entity side information -- by combining the recommendation loss function with an extra side information-aware loss -- in this paper, we propose instead a novel pre-training scheme for leveraging the side information. In particular, we first pre-train a representation model using the side information of the entities, and then fine-tune it using an existing general representation-based recommendation model. Specifically, we propose two pre-training models, named GCN-P and COM-P, by considering the entities and their relations constructed from side information as two different types of graphs respectively, to pre-train entity embeddings. For the GCN-P model, two single-relational graphs are constructed from all the users and items side information respectively, to pre-train entity representations by using the Graph Convolutional Networks. For the COM-P model, two multi-relational graphs are constructed to pre-train the entity representations by using the Composition-based Graph Convolutional Networks. An extensive evaluation of our pre-training models fine-tuned under four general representation-based recommender models, i.e. MF, NCF, NGCF and LightGCN, shows that effectively pre-training embeddings with both the users and items side information can significantly improve these original models in terms of both effectiveness and stability.
Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in top-$N$ recommender systems, called emph{HIN-based recommendation}. HIN chara cterizes complex, heterogeneous data relations, containing a variety of information that may not be related to the recommendation task. Therefore, it is challenging to effectively leverage useful information from HINs for improving the recommendation performance. To address the above issue, we propose a Curriculum pre-training based HEterogeneous Subgraph Transformer (called emph{CHEST}) with new emph{data characterization}, emph{representation model} and emph{learning algorithm}. Specifically, we consider extracting useful information from HIN to compose the interaction-specific heterogeneous subgraph, containing both sufficient and relevant context information for recommendation. Then we capture the rich semantics (eg graph structure and path semantics) within the subgraph via a heterogeneous subgraph Transformer, where we encode the subgraph with multi-slot sequence representations. Besides, we design a curriculum pre-training strategy to provide an elementary-to-advanced learning process, by which we smoothly transfer basic semantics in HIN for modeling user-item interaction relation. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed method over a number of competitive baselines, especially when only limited training data is available.
133 - Zhiwei Liu , Ziwei Fan , Yu Wang 2021
Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to desig n effective sequence encoders, textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for textbf{A}ugmenting textbf{S}equential textbf{Re}commendation with textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on url{https://github.com/DyGRec/ASReP}.
Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by diff erent users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.
In order to model the evolution of user preference, we should learn user/item embeddings based on time-ordered item purchasing sequences, which is defined as Sequential Recommendation (SR) problem. Existing methods leverage sequential patterns to mod el item transitions. However, most of them ignore crucial temporal collaborative signals, which are latent in evolving user-item interactions and coexist with sequential patterns. Therefore, we propose to unify sequential patterns and temporal collaborative signals to improve the quality of recommendation, which is rather challenging. Firstly, it is hard to simultaneously encode sequential patterns and collaborative signals. Secondly, it is non-trivial to express the temporal effects of collaborative signals. Hence, we design a new framework Temporal Graph Sequential Recommender (TGSRec) upon our defined continuous-time bi-partite graph. We propose a novel Temporal Collaborative Trans-former (TCT) layer in TGSRec, which advances the self-attention mechanism by adopting a novel collaborative attention. TCT layer can simultaneously capture collaborative signals from both users and items, as well as considering temporal dynamics inside sequential patterns. We propagate the information learned fromTCTlayerover the temporal graph to unify sequential patterns and temporal collaborative signals. Empirical results on five datasets show that TGSRec significantly outperforms other baselines, in average up to 22.5% and 22.1%absolute improvements in Recall@10and MRR, respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا