ترغب بنشر مسار تعليمي؟ اضغط هنا

Layered Graph Embedding for Entity Recommendation using Wikipedia in the Yahoo! Knowledge Graph

88   0   0.0 ( 0 )
 نشر من قبل Chien-Chun Ni
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we describe an embedding-based entity recommendation framework for Wikipedia that organizes Wikipedia into a collection of graphs layered on top of each other, learns complementary entity representations from their topology and content, and combines them with a lightweight learning-to-rank approach to recommend related entities on Wikipedia. Through offline and online evaluations, we show that the resulting embeddings and recommendations perform well in terms of quality and user engagement. Balancing simplicity and quality, this framework provides default entity recommendations for English and other languages in the Yahoo! Knowledge Graph, which Wikipedia is a core subset of.



قيم البحث

اقرأ أيضاً

In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically tha t encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities.
196 - Le Wu , Peijie Sun , Richang Hong 2018
Collaborative Filtering (CF) is one of the most successful approaches for recommender systems. With the emergence of online social networks, social recommendation has become a popular research direction. Most of these social recommendation models uti lized each users local neighbors preferences to alleviate the data sparsity issue in CF. However, they only considered the local neighbors of each user and neglected the process that users preferences are influenced as information diffuses in the social network. Recently, Graph Convolutional Networks~(GCN) have shown promising results by modeling the information diffusion process in graphs that leverage both graph structure and node feature information. To this end, in this paper, we propose an effective graph convolutional neural network based model for social recommendation. Based on a classical CF model, the key idea of our proposed model is that we borrow the strengths of GCNs to capture how users preferences are influenced by the social diffusion process in social networks. The diffusion of users preferences is built on a layer-wise diffusion manner, with the initial user embedding as a function of the current users features and a free base user latent vector that is not contained in the user feature. Similarly, each items latent vector is also a combination of the items free latent vector, as well as its feature representation. Furthermore, we show that our proposed model is flexible when user and item features are not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.
118 - Huimin Zhou , Qing Li , Yong Jiang 2021
In the current deep learning based recommendation system, the embedding method is generally employed to complete the conversion from the high-dimensional sparse feature vector to the low-dimensional dense feature vector. However, as the dimension of the input vector of the embedding layer is too large, the addition of the embedding layer significantly slows down the convergence speed of the entire neural network, which is not acceptable in real-world scenarios. In addition, as the interaction between users and items increases and the relationship between items becomes more complicated, the embedding method proposed for sequence data is no longer suitable for graphic data in the current real environment. Therefore, in this paper, we propose the Dual-modal Graph Embedding Method (DGEM) to solve these problems. DGEM includes two modes, static and dynamic. We first construct the item graph to extract the graph structure and use random walk of unequal probability to capture the high-order proximity between the items. Then we generate the graph embedding vector through the Skip-Gram model, and finally feed the downstream deep neural network for the recommendation task. The experimental results show that DGEM can mine the high-order proximity between items and enhance the expression ability of the recommendation model. Meanwhile it also improves the recommendation performance by utilizing the time dependent relationship between items.
In recent years, recommender systems play a pivotal role in helping users identify the most suitable items that satisfy personal preferences. As user-item interactions can be naturally modelled as graph-structured data, variants of graph convolutiona l networks (GCNs) have become a well-established building block in the latest recommenders. Due to the wide utilization of sensitive user profile data, existing recommendation paradigms are likely to expose users to the threat of privacy breach, and GCN-based recommenders are no exception. Apart from the leakage of raw user data, the fragility of current recommenders under inference attacks offers malicious attackers a backdoor to estimate users private attributes via their behavioral footprints and the recommendation results. However, little attention has been paid to developing recommender systems that can defend such attribute inference attacks, and existing works achieve attack resistance by either sacrificing considerable recommendation accuracy or only covering specific attack models or protected information. In our paper, we propose GERAI, a novel differentially private graph convolutional network to address such limitations. Specifically, in GERAI, we bind the information perturbation mechanism in differential privacy with the recommendation capability of graph convolutional networks. Furthermore, based on local differential privacy and functional mechanism, we innovatively devise a dual-stage encryption paradigm to simultaneously enforce privacy guarantee on users sensitive features and the model optimization process. Extensive experiments show the superiority of GERAI in terms of its resistance to attribute inference attacks and recommendation effectiveness.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا