ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the D-Egg Optical Sensor for the IceCube Upgrade

100   0   0.0 ( 0 )
 نشر من قبل Colton Hill
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New optical sensors called the D-Egg have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high quantum efficient photomultiplier tubes (PMTs), they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitised using ultra-low-power 14-bit ADCs with a sampling frequency of 240 megaSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200 PE within 10 nanosecond, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in data acquisition system.

قيم البحث

اقرأ أيضاً

Pixel sensors based on commercial high-voltage CMOS processes are an exciting technology that is considered as an option for the outer layer of the ATLAS inner tracker upgrade at the High Luminosity LHC. Here, charged particles are detected using dee p n-wells as sensor diodes with the depleted region extending into the silicon bulk. Both analog and digital readout electronics can be added to achieve different levels of integration up to a fully monolithic sensor. Small scale prototypes using the ams CMOS technology have previously demonstrated that it can achieve the required radiation tolerance of $10^{15}~text{n}_text{eq}/text{cm}^2$ and detection efficiencies above $99.5~%$. Recently, large area prototypes, comparable in size to a full sensor, have been produced that include most features required towards a final design: the H35demo prototype produced in ams H35 technology that supports both external and integrated readout and the monolithic ATLASPix1 pre-production design produced in ams aH18 technology. Both chips are based on large fill-factor pixel designs, but differ in readout structure. Performance results for H35DEMO with capacitively-coupled external readout and first results for the monolithic ATLASPix1 are shown.
The Wavelength-shifting Optical Module (WOM) is a novel optical sensor that uses wavelength shifting and light guiding to substantially enhance the photosensitive area of UV optical modules. It has been designed for the IceCube Upgrade, a seven-strin g extension of the IceCube detector planned for the 2022/2023 South Pole deployment season. The WOM consists of a hollow quartz cylinder coated in wavelength shifting paint which serves as detection area and has two photomultipliers (PMTs) attached to the end faces. The light-collecting tube increases the effective photocathode area of the PMTs without producing additional dark current, making it suitable for low-signal, low-noise applications. We report on the design and performance of the WOM with a focus on the 12 modules in production for deployment in the IceCube Upgrade. While the WOM will be deployed in IceCube, its design is applicable to any large-volume particle detector based on the detection of Cherenkov light.
We present performance studies of a segmented optical module for the IceCube-Gen2 detector. Based on the experience gained in sensor development for the IceCube Upgrade, the new sensor will consist of up to eighteen 4 inch PMTs housed in a transparen t pressure vessel, providing homogeneous angular coverage. The use of custom molded optical `gel pads around the PMTs enhances the photon capture rate via total internal reflection at the gel-air interface. This contribution presents simulation studies of various sensor, PMT, and gel pad geometries aimed at optimizing the sensitivity of the optical module in the face of confined space and harsh environmental conditions at the South Pole.
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6$%$ and wire pitch precision bett er than 10 $mu$m. The gas gain uniformity and energy resolution are measured to be better than 1$%$ (RMS) and 20$%$ (FWHM), respectively, using an $^{55}$Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. The test results show that the constructed iTPC prototype meets all project requirements.
A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is $99.95pm0.05,%$, while the intrinsic spatial resolutions are $4.80pm0.25,mu mathrm{m}$ and $7.99pm0.21,mu mathrm{m}$ along the $100,mu mathrm{m}$ and $150,mu mathrm{m}$ pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا