ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance studies for a next-generation optical sensor for IceCube-Gen2

69   0   0.0 ( 0 )
 نشر من قبل Nobuhiro Shimizu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present performance studies of a segmented optical module for the IceCube-Gen2 detector. Based on the experience gained in sensor development for the IceCube Upgrade, the new sensor will consist of up to eighteen 4 inch PMTs housed in a transparent pressure vessel, providing homogeneous angular coverage. The use of custom molded optical `gel pads around the PMTs enhances the photon capture rate via total internal reflection at the gel-air interface. This contribution presents simulation studies of various sensor, PMT, and gel pad geometries aimed at optimizing the sensitivity of the optical module in the face of confined space and harsh environmental conditions at the South Pole.

قيم البحث

اقرأ أيضاً

The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ~PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the a ccessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ~30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.
New optical sensors called the D-Egg have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high quantum efficient photomultiplier tubes (PMTs), they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitised using ultra-low-power 14-bit ADCs with a sampling frequency of 240 megaSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200 PE within 10 nanosecond, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in data acquisition system.
Understanding the formation and evolution of galaxies over cosmic time is one of the foremost goals of astrophysics and cosmology today. The cosmic star formation rate has undergone a dramatic evolution over the course of the last 14 billion years, a nd dust obscured star forming galaxies (DSFGs) are a crucial component of this evolution. A variety of important, bright, and unextincted diagnostic lines are present in the far-infrared (FIR) which can provide crucial insight into the physical conditions of galaxy evolution, including the instantaneous star formation rate, the effect of AGN feedback on star formation, the mass function of the stars, metallicities, and the spectrum of their ionizing radiation. FIR spectroscopy is technically difficult but scientifically crucial. Stratospheric balloons offer a platform which can outperform current instrument sensitivities and are the only way to provide large-area, wide bandwidth spatial/spectral mapping at FIR wavelengths. NASA recently selected TIM, the Terahertz Intensity Mapper, with the goal of demonstrating the key technical milestones necessary for FIR spectroscopy. The TIM instrument consists of an integral-field spectrometer from 240-420 microns with 3600 kinetic-inductance detectors (KIDs) coupled to a 2-meter low-emissivity carbon fiber telescope. In this paper, we will summarize plans for the TIM experiments development, test and deployment for a planned flight from Antarctica.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا