ﻻ يوجد ملخص باللغة العربية
Pixel sensors based on commercial high-voltage CMOS processes are an exciting technology that is considered as an option for the outer layer of the ATLAS inner tracker upgrade at the High Luminosity LHC. Here, charged particles are detected using deep n-wells as sensor diodes with the depleted region extending into the silicon bulk. Both analog and digital readout electronics can be added to achieve different levels of integration up to a fully monolithic sensor. Small scale prototypes using the ams CMOS technology have previously demonstrated that it can achieve the required radiation tolerance of $10^{15}~text{n}_text{eq}/text{cm}^2$ and detection efficiencies above $99.5~%$. Recently, large area prototypes, comparable in size to a full sensor, have been produced that include most features required towards a final design: the H35demo prototype produced in ams H35 technology that supports both external and integrated readout and the monolithic ATLASPix1 pre-production design produced in ams aH18 technology. Both chips are based on large fill-factor pixel designs, but differ in readout structure. Performance results for H35DEMO with capacitively-coupled external readout and first results for the monolithic ATLASPix1 are shown.
Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas
In the context of the studies of the ATLAS High Luminosity LHC programme, radiation tolerant pixel detectors in CMOS technologies are investigated. To evaluate the effects of substrate resistivity on CMOS sensor performance, the H35DEMO demonstrator,
HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We p
This work presents a depleted monolithic active pixel sensor (DMAPS) prototype manufactured in the LFoundry 150,nm CMOS process. DMAPS exploit high voltage and/or high resistivity inclusion of modern CMOS technologies to achieve substantial depletion
The Mu3e experiment is searching for the charged lepton flavour violating decay $ mu^+rightarrow e^+ e^- e^+ $, aiming for an ultimate sensitivity of one in $10^{16}$ decays. In an environment of up to $10^9$ muon decays per second the detector needs