ﻻ يوجد ملخص باللغة العربية
A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is $99.95pm0.05,%$, while the intrinsic spatial resolutions are $4.80pm0.25,mu mathrm{m}$ and $7.99pm0.21,mu mathrm{m}$ along the $100,mu mathrm{m}$ and $150,mu mathrm{m}$ pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.
The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam bac
Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the $1.6<| eta |<2.4$ endcap region. With a sufficiently fine segmentation GEMs can
During the third long shutdown of the CERN Large Hadron Collider, the CMS Detector will undergo a major upgrade to prepare for Phase-2 of the CMS physics program, starting around 2026. The upgraded CMS detector will be read out at an unprecedented da
Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing betw
A completely New Small Wheel (NSW) will be constructed for ATLAS Phase-1 upgrade. Small-Strip Thin-Gap-Chamber (sTGC) will devote to the trigger function of NSW. A full-size sTGC quadruplet consists of 4 layers, and will need 4 pad Front-End-Boards a