ﻻ يوجد ملخص باللغة العربية
Cosmic rays are ubiquitous and readily available, making them a good teaching tool for particle and astrophysics by young students. Tan-Q is an inclusive outreach and educational project, providing students in Japanese junior-high or high schools with research opportunities to join cosmic-ray and particle physics. In the Tan-Q framework, the students in each school conduct their research with help from mentors who are mainly undergraduate students. Researchers are also extensively involved through regular Zoom meetings and continuous communication on Slack. Some cases are inter-school, and some are international. This paper presents one of the Tan-Q activities of joint research between high schools in Japan and Argentina to observe cosmic-ray muons using CosmicWatches. Our primary goal is to investigate the muon flux differences due to the differences in circumstances like altitudes and geomagnetic field strengths. Those involved learn not only particle physics but also statistical data analysis methods.
Over the past two decades, I have been actively involved in teaching astronomy and astrophysics to Chicago Public School (CPS) students and their teachers, in collaboration with various groups as well as by myself. Valuable resources that we have cre
We report our experience in bringing science into US and French classrooms. We participated in the US scientific educational program Project ASTRO. It is based on a partnership between a school teacher and an astronomer. They together design and real
Background: Qualitative interviewing is a common tool that has been utilized by Science, Technology, Engineering, and Mathematics (STEM) education researchers to explore and describe the experiences of students, educators, or other educational stakeh
The International Particle Physics Outreach Group (IPPOG) has been making concerted and systematic efforts to present and popularise particle physics across all audiences and age groups since 1997. Today the scientific community has in IPPOG a strate
We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at t