ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the Life Grid Interview Technique in Science Education Research

181   0   0.0 ( 0 )
 نشر من قبل Dimitri Dounas-Frazer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Qualitative interviewing is a common tool that has been utilized by Science, Technology, Engineering, and Mathematics (STEM) education researchers to explore and describe the experiences of students, educators, or other educational stakeholders. Some interviewing techniques use co-creation of an artifact, such as a personal timeline, as a unique way to elicit a detailed narrative from a respondent. The purpose of this commentary is to describe an interview artifact called a life grid. First used and validated in medical sociology to conduct life course research, we adapted the life grid for use in research on undergraduate STEM education. We applied the life grid interview technique to two contexts: 1) students in an advance degree program reflecting on their entire undergraduate career as a biology major, and 2) students in an undergraduate physics program reflecting on a multi-week lab project. Results: We found that the life grid supported four important attributes of an interview: facilitation of the respondents agency, establishment of rapport between interviewers and respondents, enhanced depth of the respondents narratives, and the construction of more accurate accounts of events. We situate our experiences with respect to those attributes and compare them with the experiences detailed in literature. Conclusions: We conclude with recommendations for future use of the life grid technique in undergraduate STEM education research. Overall, we find the life grid to be a valuable tool to use when conducting interviews about phenomena with a chronological component.

قيم البحث

اقرأ أيضاً

The International Particle Physics Outreach Group (IPPOG) has been making concerted and systematic efforts to present and popularise particle physics across all audiences and age groups since 1997. Today the scientific community has in IPPOG a strate gic pillar in fostering long-term, sustainable support for fundamental research around the world. One of the main tools IPPOG has been offering to the scientific community, teachers and educators for almost 10 years is the Resource Database (RDB), an online platform containing a collection of high quality engaging education and outreach materials in particle physics and related sciences.
211 - Sun Kwok 2018
The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit thei r needs. Advances in technology also make certain modes of learning obsolete. In the last 10 years, the Faculty of Science of the University of Hong Kong has undertaken major curriculum reforms. A sequence of science foundation courses required of all incoming science students are designed to teach science in an integrated manner, and to emphasize the concepts and utilities, not computational techniques, of mathematics. A number of non-discipline specific common core courses have been developed to broaden students awareness of the relevance of science to society and the interdisciplinary nature of science. By putting the emphasis on the scientific process rather than the outcome, students are taught how to identify, formulate, and solve diverse problems.
The authors use an action research (AR) approach in a collegiate studio physics class to investigate the power of partnerships via conferences as they relate to issues of establishing a student/mentor rapport, empowering students to reduce inequity, and the successes and barriers to hearing students voices. The graduate teaching assistant (TA, Author 1) conducted one-on-one conferences with 29 students, elicited student opinions about the progress of the course, and talked with faculty, TAs, and an undergraduate supplemental instructor for other sections of the course. At the end of the semester, the students reported increased knowledge of the TA as a person and as an instructor, and vice versa. Sixty-five percent of students reported no interest in changing circumstances to make it easier to talk about personal concerns with the TA. College students reluctantly voiced their opinions about the course, possibly due to the power structure of the classroom. Other TAs in the department expressed mostly disinterest in the project, while faculty members were interested in student learning but skeptical of student empowerment. A case study of one student is presented, wherein his attendance improved in the course and he received additional help outside class, both possibly as a result of the student/TA conferences. Students in this studio physics section were more likely to interact directly with faculty or TAs during lectures, but less likely to do so during lab sessions, than were students in a non-studio physics section.
We describe a course designed to help future educators build an integrated understanding of the different elements of physics education research (PER), including: research into student learning, content knowledge from the perspective of how it is lea rned, and reform-based curricula together with evidence of their effectiveness. Course elements include equal parts of studying physics through proven curricula and discussion of research results in the context of the PER literature. We provide examples of the course content and structure as well as representative examples of student learning in the class.
Due to the interdisciplinary nature of complex systems as a field, students studying complex systems at University level have diverse disciplinary backgrounds. This brings challenges (e.g. wide range of computer programming skills) but also opportuni ties (e.g. facilitating interdisciplinary interactions and projects) for the classroom. However, there is little published regarding how these challenges and opportunities are handled in teaching and learning Complex Systems as an explicit subject in higher education, and how this differs in comparison to other subject areas. We seek to explore these particular challenges and opportunities via an interview-based study of pioneering teachers and learners (conducted amongst the authors) regarding their experiences. We compare and contrast those experiences, and analyse them with respect to the educational literature. Our discussions explored: approaches to curriculum design, how theories/models/frameworks of teaching and learning informed decisions and experience, how diversity in student backgrounds was addressed, and assessment task design. We found a striking level of commonality in the issues expressed as well as the strategies to handle them, for example a significant focus on problem-based learning, and the use of major student-led creative projects for both achieving and assessing learning outcomes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا