ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterisation of spatial charge sensitivity in a multi-mode superconducting qubit

64   0   0.0 ( 0 )
 نشر من قبل James Wills
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding and suppressing sources of decoherence is a leading challenge in building practical quantum computers. In superconducting qubits, low frequency charge noise is a well-known decoherence mechanism that is effectively suppressed in the transmon qubit. Devices with multiple charge-sensitive modes can exhibit more complex behaviours, which can be exploited to study charge fluctuations in superconducting qubits. Here we characterise charge-sensitivity in a superconducting qubit with two transmon-like modes, each of which is sensitive to multiple charge-parity configurations and charge-offset biases. Using Ramsey interferometry, we observe sensitivity to four charge-parity configurations and track two independent charge-offset drifts over hour timescales. We provide a predictive theory for charge sensitivity in such multi-mode qubits which agrees with our results. Finally, we demonstrate the utility of a multi-mode qubit as a charge detector by spatially tracking local-charge drift.



قيم البحث

اقرأ أيضاً

Superconducting qubits with in-situ tunable properties are important for constructing a quantum computer. Qubit tunability, however, often comes at the expense of increased noise sensitivity. Here, we propose a flux-tunable superconducting qubit that minimizes the dephasing due to magnetic flux noise by engineering controllable flux sweet spots at frequencies of interest. This is realized by using a SQUID with asymmetric Josephson junctions shunted by a superinductor formed from an array of junctions. Taking into account correlated global and local noises, it is possible to improve dephasing time by several orders of magnitude. The proposed qubit can be used to realize fast, high-fidelity two-qubit gates in large-scale quantum processors, a key ingredient for implementing fault-tolerant quantum computers.
We show that it is possible to use the spatial quantum correlations present in twin beams to extract information about the shape of a mask in the path of one of the beams. The scheme, based on noise measurements through homodyne detection, is useful in the regime where the number of photons is low enough that direct detection with a photodiode is difficult but high enough that photon counting is not an option. We find that under some conditions the use of quantum states of light leads to an enhancement of the sensitivity in the estimation of the shape of the mask over what can be achieved with a classical state with equivalent properties (mean photon flux and noise properties). In addition, we show that the level of enhancement that is obtained is a result of the quantum correlations and cannot be explained with only classical correlations.
The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-native gate set may decrease the number of required gates, provided th at all gates are realized with high fidelity. Here, we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an error per gate of $0.9pm0.03%$ and $1.3pm0.4%$ fidelity for the CZ and the iSWAP gate, respectively. We argue that spurious $ZZ$-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to be taken into account when mapping quantum algorithms to real hardware.
We study the effect of homodyne detector visibility on the measurement of quadrature squeezing for a spatially multi-mode source of two-mode squeezed light. Sources like optical parametric oscillators (OPO) typically produce squeezing in a single spa tial mode because the nonlinear medium is within a mode-selective optical cavity. For such a source, imperfect interference visibility in the homodyne detector couples in additional vacuum noise, which can be accounted for by introducing an equivalent loss term. In a free-space multi-spatial-mode system imperfect homodyne detector visibility can couple in uncorrelated squeezed modes, and hence can cause faster degradation of the measured squeezing. We show experimentally the dependence of the measured squeezing level on the visibility of homodyne detectors used to probe two-mode squeezed states produced by a free space four-wave mixing process in 85Rb vapor, and also demonstrate that a simple theoretical model agrees closely with the experimental data.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement s ensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا