ﻻ يوجد ملخص باللغة العربية
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement sensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
Electron-spin nitrogen-vacancy color centers in diamond are a natural candidate to act as a quantum memory for superconducting qubits because of their large collective coupling and long coherence times. We report here the first demonstration of stron
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting
We propose an experimentally realizable hybrid quantum circuit for achieving a strong coupling between a spin ensemble and a transmission-line resonator via a superconducting flux qubit used as a data bus. The resulting coupling can be used to transf
We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ~ 60 mu s by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to lift-off aluminum deposited simultaneously with the Josephson j
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV)