ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge and flux insensitive tunable superconducting qubit

396   0   0.0 ( 0 )
 نشر من قبل Eyob Sete
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting qubits with in-situ tunable properties are important for constructing a quantum computer. Qubit tunability, however, often comes at the expense of increased noise sensitivity. Here, we propose a flux-tunable superconducting qubit that minimizes the dephasing due to magnetic flux noise by engineering controllable flux sweet spots at frequencies of interest. This is realized by using a SQUID with asymmetric Josephson junctions shunted by a superinductor formed from an array of junctions. Taking into account correlated global and local noises, it is possible to improve dephasing time by several orders of magnitude. The proposed qubit can be used to realize fast, high-fidelity two-qubit gates in large-scale quantum processors, a key ingredient for implementing fault-tolerant quantum computers.



قيم البحث

اقرأ أيضاً

167 - Hu Zhao , Tiefu Li , Jianshe Liu 2013
A phase-slip flux qubit, exactly dual to a charge qubit, is composed of a superconducting loop interrupted by a phase-slip junction. Here we propose a tunable phase-slip flux qubit by replacing the phase-slip junction with a charge-related supercondu cting quantum interference device (SQUID) consisting of two phase-slip junctions connected in series with a superconducting island. This charge-SQUID acts as an effective phase-slip junction controlled by the applied gate voltage and can be used to tune the energy-level splitting of the qubit. Also, we show that a large inductance inserted in the loop can reduce the inductance energy and consequently suppress the dominating flux noise of the phase-slip flux qubit. This enhanced phase-slip flux qubit is exactly dual to a transmon qubit.
194 - A. Fay 2007
We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurements of the charge qubits quantum states is performed by resonant read-out via the measurement of the quantum states of the SQUID. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.
Electron spin resonance (ESR) is a useful tool to investigate properties of materials in magnetic fields where high spin polarization of target electron spins is required in order to obtain high sensitivity. However, the smaller magnetic fields becom es, the more difficult high polarization is passively obtained by thermalization. Here, we propose to employ a superconducting flux qubit (FQ) to polarize electron spins actively. We have to overcome a large energy difference between the FQ and electron spins for efficient energy transfer among them. For this purpose, we adopt a spin-lock technique on the FQ where the Rabi frequency associated with the spin-locking can match the resonance (Larmor) one of the electron spins. We find that adding dephasing on the spins is beneficial to obtain high polarization of them, because otherwise the electron spins are trapped in dark states that cannot be coupled with the FQ. We show that our scheme can achieve high polarization of electron spins in realistic experimental conditions.
Magnetic flux tunability is an essential feature in most approaches to quantum computing based on superconducting qubits. Independent control of the fluxes in multiple loops is hampered by crosstalk. Calibrating flux crosstalk becomes a challenging t ask when the circuit elements interact strongly. We present a novel approach to flux crosstalk calibration, which is circuit model independent and relies on an iterative process to gradually improve calibration accuracy. This method allows us to reduce errors due to the inductive coupling between loops. The calibration procedure is automated and implemented on devices consisting of tunable flux qubits and couplers with up to 27 control loops. We devise a method to characterize the calibration error, which is used to show that the errors of the measured crosstalk coefficients are all below 0.17%.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coup ling between a quantum device and YIG thin film has yet been demonstrated. Here, we propose a scheme to achieve strong coupling between superconducting flux qubits and magnon modes in YIG thin film. Unlike the direct $sqrt{N}$ enhancement factor in coupling to the Kittel mode or other spin ensembles, with N the total number of spins, an additional spatial dependent phase factor needs to be considered when the qubits are magnetically coupled with the magnon modes of finite wavelength. To avoid undesirable cancelation of coupling caused by the symmetrical boundary condition, a CoFeB thin layer is added to one side of the YIG thin film to break the symmetry. Our numerical simulation demonstrates avoided crossing and coherent transfer of quantum information between the flux qubits and the standing spin waves in YIG thin films. We show that the YIG thin film can be used as a tunable switch between two flux qubits, which have modified shape with small direct inductive coupling between them. Our results manifest that it is possible to couple flux qubits while suppressing undesirable cross-talk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا