ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of imperfect homodyne visibility on multi-spatial-mode two-mode squeezing measurements

78   0   0.0 ( 0 )
 نشر من قبل Prasoon Gupta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of homodyne detector visibility on the measurement of quadrature squeezing for a spatially multi-mode source of two-mode squeezed light. Sources like optical parametric oscillators (OPO) typically produce squeezing in a single spatial mode because the nonlinear medium is within a mode-selective optical cavity. For such a source, imperfect interference visibility in the homodyne detector couples in additional vacuum noise, which can be accounted for by introducing an equivalent loss term. In a free-space multi-spatial-mode system imperfect homodyne detector visibility can couple in uncorrelated squeezed modes, and hence can cause faster degradation of the measured squeezing. We show experimentally the dependence of the measured squeezing level on the visibility of homodyne detectors used to probe two-mode squeezed states produced by a free space four-wave mixing process in 85Rb vapor, and also demonstrate that a simple theoretical model agrees closely with the experimental data.



قيم البحث

اقرأ أيضاً

As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light.
Quantum states of light can improve imaging whenever the image quality and resolution are limited by the quantum noise of the illumination. In the case of a bright illumination, quantum enhancement is obtained for a light field composed of many squee zed transverse modes. A possible realization of such a multi-spatial-mode squeezed state is a field which contains a transverse plane in which the local electric field displays reduced quantum fluctuations at all locations, on any one quadrature. Using nondegenerate four-wave mixing in a hot vapor, we have generated a bichromatic multi-spatial-mode squeezed state and showed that it exhibits localised quadrature squeezing at any point of its transverse profile, in regions much smaller than its size. We observe 75 independently squeezed regions. This confirms the potential of this technique for producing illumination suitable for practical quantum imaging.
We show that it is possible to use the spatial quantum correlations present in twin beams to extract information about the shape of a mask in the path of one of the beams. The scheme, based on noise measurements through homodyne detection, is useful in the regime where the number of photons is low enough that direct detection with a photodiode is difficult but high enough that photon counting is not an option. We find that under some conditions the use of quantum states of light leads to an enhancement of the sensitivity in the estimation of the shape of the mask over what can be achieved with a classical state with equivalent properties (mean photon flux and noise properties). In addition, we show that the level of enhancement that is obtained is a result of the quantum correlations and cannot be explained with only classical correlations.
We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum electrodynamics. Inspired by a previous scheme for optical cavities [Phys. Rev. A $textbf{73}$, 043803(2006)], we employ a superconducting qubit cou pled to two nondegenerate quantum modes and use a driving field on the qubit to adequately control the resonator-qubit interaction. Based on the generation of two-mode squeezed vacuum states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which makes our scheme attractive for future applications in continuous-variable quantum information processing and quantum metrology in the realm of circuit quantum electrodynamics.
We studied the spatial coherence of a Bosonic two-dimensional multi-mode condensate both through measurements and simulations. It is shown that condensates with a constant spatial density must be described as the superposition of several quantized mo des which reduces the overall coherence. In this case, the spatial coherence can appear to decay faster than allowed by the Berezinskii-Kosterlitz-Thouless (BKT) theory. However, we find through spectroscopic measurements that the individual modes show a slower decay of the spatial coherence than the overall system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا