ﻻ يوجد ملخص باللغة العربية
Spin qubits are contenders for scalable quantum computation because of their long coherence times demonstrated in a variety of materials, but individual control by frequency-selective addressing using pulsed spin resonance creates severe technical challenges for scaling up to many qubits. This individual resonance control strategy requires each spin to have a distinguishable frequency, imposing a maximum number of spins that can be individually driven before qubit crosstalk becomes unavoidable. Here we describe a complete strategy for controlling a large array of spins in quantum dots dressed by an on-resonance global field, namely a field that is constantly driving the spin qubits, to dynamically decouple from the effects of background magnetic field fluctuations. This approach -- previously implemented for the control of single electron spins bound to electrons in impurities -- is here harmonized with all other operations necessary for universal quantum computing with spins in quantum dots. We define the logical states as the dressed qubit states and discuss initialization and readout utilizing Pauli spin blockade, as well as single- and two-qubit control in the new basis. Finally, we critically analyze the limitations imposed by qubit variability and potential strategies to improve performance.
Global control strategies for arrays of qubits are a promising pathway to scalable quantum computing. A continuous-wave global field provides decoupling of the qubits from background noise. However, this approach is limited by variability in the para
Artificial magnetic molecules can contribute to progressing towards large scale quantum computation by: a) integrating multiple quantum resources and b) reducing the computational costs of some applications. Chemical design, guided by theoretical pro
Under ambient conditions, spin impurities in solid-state systems are found in thermally-mixed states and are optically dark, i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the e
Dopant atoms are ubiquitous in semiconductor technologies, providing the tailored electronic properties that underpin the modern digital information era. Harnessing the quantum nature of these atomic-scale objects represents a new and exciting techno
In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particle-like excitations (quasiparticles) around one another in two space d