ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Computation Protocol for Dressed Spins in a Global Field

146   0   0.0 ( 0 )
 نشر من قبل Amanda Seedhouse
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin qubits are contenders for scalable quantum computation because of their long coherence times demonstrated in a variety of materials, but individual control by frequency-selective addressing using pulsed spin resonance creates severe technical challenges for scaling up to many qubits. This individual resonance control strategy requires each spin to have a distinguishable frequency, imposing a maximum number of spins that can be individually driven before qubit crosstalk becomes unavoidable. Here we describe a complete strategy for controlling a large array of spins in quantum dots dressed by an on-resonance global field, namely a field that is constantly driving the spin qubits, to dynamically decouple from the effects of background magnetic field fluctuations. This approach -- previously implemented for the control of single electron spins bound to electrons in impurities -- is here harmonized with all other operations necessary for universal quantum computing with spins in quantum dots. We define the logical states as the dressed qubit states and discuss initialization and readout utilizing Pauli spin blockade, as well as single- and two-qubit control in the new basis. Finally, we critically analyze the limitations imposed by qubit variability and potential strategies to improve performance.



قيم البحث

اقرأ أيضاً

Global control strategies for arrays of qubits are a promising pathway to scalable quantum computing. A continuous-wave global field provides decoupling of the qubits from background noise. However, this approach is limited by variability in the para meters of individual qubits in the array. Here we show that by modulating a global field simultaneously applied to the entire array, we are able to encode qubits that are less sensitive to the statistical scatter in qubit resonance frequency and microwave amplitude fluctuations, which are problems expected in a large scale system. We name this approach the SMART (Sinusoidally Modulated, Always Rotating and Tailored) qubit protocol. We show that there exist optimal modulation conditions for qubits in a global field that robustly provide improved coherence times. We discuss in further detail the example of spins in silicon quantum dots, in which universal one- and two-qubit control is achieved electrically by controlling the spin-orbit coupling of individual qubits and the exchange coupling between spins in neighbouring dots. This work provides a high-fidelity qubit operation scheme in a global field, significantly improving the prospects for scalability of spin-based quantum computer architectures.
103 - S. Carretta , D. Zueco , A. Chiesa 2021
Artificial magnetic molecules can contribute to progressing towards large scale quantum computation by: a) integrating multiple quantum resources and b) reducing the computational costs of some applications. Chemical design, guided by theoretical pro posals, allows embedding nontrivial quantum functionalities in each molecular unit, which then acts as a microscopic quantum processor able to encode error protected logical qubits or to implement quantum simulations. Scaling up even further requires wiring-up multiple molecules. We discuss how to achieve this goal by the coupling to on-chip superconducting resonators. The potential advantages of this hybrid approach and the challenges that still lay ahead are critically reviewed.
Under ambient conditions, spin impurities in solid-state systems are found in thermally-mixed states and are optically dark, i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the e lectronic spin states are bright, i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a dressed-state, double-resonance scheme to transfer polarization from bright NV electronic spins to dark substitutional-Nitrogen (P1) electronic spins in diamond. This polarization-transfer mechanism could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.
Dopant atoms are ubiquitous in semiconductor technologies, providing the tailored electronic properties that underpin the modern digital information era. Harnessing the quantum nature of these atomic-scale objects represents a new and exciting techno logical revolution. In this article we describe the use of ion-implanted donor spins in silicon for quantum technologies. We review how to fabricate and operate single-atom spin qubits in silicon, obtaining some of the most coherent solid-state qubits, and we discuss pathways to scale up these qubits to build large quantum processors. Heavier group-V donors with large nuclear spins display electric quadrupole couplings that enable nuclear electric resonance, quantum chaos and strain sensing. Donor ensembles can be coupled to microwave cavities to develop hybrid quantum Turing machines. Counted, deterministic implantation of single donors, combined with novel methods for precision placement, will allow the integration of individual donors spins with industry-standard silicon fabrication processes, making implanted donors a prime physical platform for the second quantum revolution.
In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particle-like excitations (quasiparticles) around one another in two space d imensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum gates depend only on the topology of the braids formed by these world-lines. We show how to find braids that yield a universal set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly promising for experimental realization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا