ﻻ يوجد ملخص باللغة العربية
Dopant atoms are ubiquitous in semiconductor technologies, providing the tailored electronic properties that underpin the modern digital information era. Harnessing the quantum nature of these atomic-scale objects represents a new and exciting technological revolution. In this article we describe the use of ion-implanted donor spins in silicon for quantum technologies. We review how to fabricate and operate single-atom spin qubits in silicon, obtaining some of the most coherent solid-state qubits, and we discuss pathways to scale up these qubits to build large quantum processors. Heavier group-V donors with large nuclear spins display electric quadrupole couplings that enable nuclear electric resonance, quantum chaos and strain sensing. Donor ensembles can be coupled to microwave cavities to develop hybrid quantum Turing machines. Counted, deterministic implantation of single donors, combined with novel methods for precision placement, will allow the integration of individual donors spins with industry-standard silicon fabrication processes, making implanted donors a prime physical platform for the second quantum revolution.
We experimentally study the coupling of Group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts which are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (V
Electron spins are amongst the most coherent solid-state systems known, however, to be used in devices for quantum sensing and information processing applications, they must be typically placed near interfaces. Understanding and mitigating the impact
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using Tight-binding and Band Minima Basis approaches and compared to the recent precision measurement
We study single- and multi-quantum transitions of the nuclear spins of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of lig
Electron spins in silicon quantum dots provide a promising route towards realising the large number of coupled qubits required for a useful quantum processor. At present, the requisite single-shot spin qubit measurements are performed using on-chip c