ترغب بنشر مسار تعليمي؟ اضغط هنا

A perspective on scaling up quantum computation with molecular spins

104   0   0.0 ( 0 )
 نشر من قبل Fernando Luis
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial magnetic molecules can contribute to progressing towards large scale quantum computation by: a) integrating multiple quantum resources and b) reducing the computational costs of some applications. Chemical design, guided by theoretical proposals, allows embedding nontrivial quantum functionalities in each molecular unit, which then acts as a microscopic quantum processor able to encode error protected logical qubits or to implement quantum simulations. Scaling up even further requires wiring-up multiple molecules. We discuss how to achieve this goal by the coupling to on-chip superconducting resonators. The potential advantages of this hybrid approach and the challenges that still lay ahead are critically reviewed.



قيم البحث

اقرأ أيضاً

Spin qubits are contenders for scalable quantum computation because of their long coherence times demonstrated in a variety of materials, but individual control by frequency-selective addressing using pulsed spin resonance creates severe technical ch allenges for scaling up to many qubits. This individual resonance control strategy requires each spin to have a distinguishable frequency, imposing a maximum number of spins that can be individually driven before qubit crosstalk becomes unavoidable. Here we describe a complete strategy for controlling a large array of spins in quantum dots dressed by an on-resonance global field, namely a field that is constantly driving the spin qubits, to dynamically decouple from the effects of background magnetic field fluctuations. This approach -- previously implemented for the control of single electron spins bound to electrons in impurities -- is here harmonized with all other operations necessary for universal quantum computing with spins in quantum dots. We define the logical states as the dressed qubit states and discuss initialization and readout utilizing Pauli spin blockade, as well as single- and two-qubit control in the new basis. Finally, we critically analyze the limitations imposed by qubit variability and potential strategies to improve performance.
The hyperpolarisation of nuclear spins within target molecules is a critical and complex challenge in magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) spectroscopy. Hyperpolarisation offers enormous gains in signal and spatial re solution which may ultimately lead to the development of molecular MRI and NMR. At present, techniques used to polarise nuclear spins generally require low temperatures and/or high magnetic fields, radio-frequency control fields, or the introduction of catalysts or free-radical mediators. The emergence of room temperature solid-state spin qubits has opened exciting new pathways to circumvent these requirements to achieve direct nuclear spin hyperpolarisation using quantum control. Employing a novel cross-relaxation induced polarisation (CRIP) protocol using a single nitrogen-vacancy (NV) centre in diamond, we demonstrate the first external nuclear spin hyperpolarisation achieved by a quantum probe, in this case of $^1$H molecular spins in poly(methyl methacrylate). In doing so, we show that a single qubit is capable of increasing the thermal polarisation of $sim 10^6$ nuclear spins by six orders of magnitude, equivalent to an applied magnetic field of $10^5$,T. The technique can also be tuned to multiple spin species, which we demonstrate using both C{13} and $^1$H nuclear spin ensembles. Our results are analysed and interpreted via a detailed theoretical treatment, which is also used to describe how the system can be scaled up to a universal quantum hyperpolarisation platform for the production of macroscopic quantities of contrast agents at high polarisation levels for clinical applications. These results represent a new paradigm for nuclear spin hyperpolarisation for molecular imaging and spectroscopy, and beyond into areas such as materials science and quantum information processing.
Phononic quantum networks feature distinct advantages over photonic networks for on-chip quantum communications, providing a promising platform for developing quantum computers with robust solid-state spin qubits. Large mechanical networks including one-dimensional chains of trapped ions, however, have inherent and well-known scaling problems. In addition, chiral phononic processes, which are necessary for conventional phononic quantum networks, are difficult to implement in a solid-state system. To overcome these seemingly unsolvable obstacles, we have developed a new network architecture that breaks a large mechanical network into small and closed mechanical subsystems. This architecture is implemented in a diamond phononic nanostructure featuring alternating phononic crystal waveguides with specially-designed bandgaps. The implementation also includes nanomechanical resonators coupled to color centers through phonon-assisted transitions as well as quantum state transfer protocols that can be robust against the thermal environment.
Spin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing grou nd-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules. Here, we demonstrate such optical addressability in a series of synthesized organometallic, chromium(IV) molecules. These compounds display a ground-state spin that can be initialized and read out using light, and coherently manipulated with microwaves. In addition, through atomistic modification of the molecular structure, we tune the spin and optical properties of these compounds, paving the way for designer quantum systems synthesized from the bottom-up.
235 - Lee C. Bassett 2019
Defects in solids are in many ways analogous to trapped atoms or molecules. They can serve as long-lived quantum memories and efficient light-matter interfaces. As such, they are leading building blocks for long-distance quantum networks and distribu ted quantum computers. This chapter describes the quantum-mechanical coupling between atom-like spin states and light, using the diamond nitrogen-vacancy (NV) center as a paradigm. We present an overview of the NV centers electronic structure, derive a general picture of coherent light-matter interactions, and describe several methods that can be used to achieve all-optical initialization, quantum-coherent control, and readout of solid-state spins. These techniques can be readily generalized to other defect systems, and they serve as the basis for advanced protocols at the heart of many emerging quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا