ترغب بنشر مسار تعليمي؟ اضغط هنا

A robust transition to homochirality in complex chemical reaction networks

101   0   0.0 ( 0 )
 نشر من قبل Gabin Laurent
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gabin Laurent




اسأل ChatGPT حول البحث

Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one such mechanism in G. Laurent et al., PNAS (2021) based on the properties of large out of equilibrium chemical networks. We showed that in such networks, a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. This paper aims at clarifying some important points in that scenario, not covered by our previous work. We first analyze the various conventions used to measure chirality, introduce the notion of chiral symmetry of a network, and study its implications regarding the relative chiral signs adopted by different groups of molecules. We then propose a generalization of Franks model for large chemical networks, which we characterize completely using methods of random matrices. This analysis can be extended to sparse networks, which shows that the emergence of homochirality is a robust transition.


قيم البحث

اقرأ أيضاً

We develop a thermodynamic framework for closed and open chemical networks applicable to non-elementary reactions that do not need to obey mass action kinetics. It only requires the knowledge of the kinetics and of the standard chemical potentials, a nd makes use of the topological properties of the network (conservation laws and cycles). Our approach is proven to be exact if the network results from a bigger network of elementary reactions where the fast-evolving species have been coarse grained. Our work should be particularly relevant for energetic considerations in biosystems where the characterization of the elementary dynamics is seldomly achieved.
vant Hoff equation relates equilibrium constant $K$ of a chemical reaction to temperature $T$. Though the vant Hoff plot ($ln K$ vs $1/T$) is linear, it is nonlinear for certain chemical reactions. In this work we attribute such observations to virial coefficients.
Reaction currents in chemical networks usually increase when increasing their driving affinities. But far from equilibrium the opposite can also happen. We find that such negative differential response (NDR) occurs in reaction schemes of major biolog ical relevance, namely, substrate inhibition and autocatalysis. We do so by deriving the full counting statistics of two minimal representative models using large deviation methods. We argue that NDR implies the existence of optimal affinities that maximize the robustness against environmental and intrinsic noise at intermediate values of dissipation. An analogous behavior is found in dissipative self-assembly, for which we identify the optimal working conditions set by NDR.
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H ere we present a simple chemical network in which the selection of states is driven by the thermodynamic necessity of dissipating heat as rapidly as possible in the presence of a thermal gradient: states participating to faster reactions contribute the most to the dissipation rate, and are the most populated ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as the complexity of the chemical network increases, the textit{velocity} of the reaction path leading to a given state determines its selection, giving rise to non-trivial localization phenomena in state space. A byproduct of our studies is that, in the presence of a temperature gradient, thermophoresis-like behavior inevitably appears depending on the transport properties of each individual state, thus hinting at a possible microscopic explanation of this intriguing yet still not fully understood phenomenon.
Preferential attachment is a central paradigm in the theory of complex networks. In this contribution we consider various generalizations of preferential attachment including for example node removal and edge rewiring. We demonstrate that generalized preferential attachment networks can undergo a topological phase transition. This transition separates networks having a power-law tail degree distribution from those with an exponential tail. The appearance of the phase transition is closely related to the breakdown of the continuous variable description of the network dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا