ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of virial coefficients in chemical reaction

198   0   0.0 ( 0 )
 نشر من قبل Vipin P
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

vant Hoff equation relates equilibrium constant $K$ of a chemical reaction to temperature $T$. Though the vant Hoff plot ($ln K$ vs $1/T$) is linear, it is nonlinear for certain chemical reactions. In this work we attribute such observations to virial coefficients.

قيم البحث

اقرأ أيضاً

We develop a thermodynamic framework for closed and open chemical networks applicable to non-elementary reactions that do not need to obey mass action kinetics. It only requires the knowledge of the kinetics and of the standard chemical potentials, a nd makes use of the topological properties of the network (conservation laws and cycles). Our approach is proven to be exact if the network results from a bigger network of elementary reactions where the fast-evolving species have been coarse grained. Our work should be particularly relevant for energetic considerations in biosystems where the characterization of the elementary dynamics is seldomly achieved.
100 - Gabin Laurent 2021
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one such mechanism in G. Laurent et al., PNAS (2021) based on the properties of large out of equilibrium chemical networks. We showed that in such networks, a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. This paper aims at clarifying some important points in that scenario, not covered by our previous work. We first analyze the various conventions used to measure chirality, introduce the notion of chiral symmetry of a network, and study its implications regarding the relative chiral signs adopted by different groups of molecules. We then propose a generalization of Franks model for large chemical networks, which we characterize completely using methods of random matrices. This analysis can be extended to sparse networks, which shows that the emergence of homochirality is a robust transition.
302 - Xia-Qing Xu , Mi Xie 2019
In this paper, we generally expressed the virial expansion of ideal quantum gases by the heat kernel coefficients for the corresponding Laplace type operator. As examples, we give the virial coefficients for quantum gases in $d$-dimensional confined space and spheres, respectively. Our results show that, the relative correction from the boundary to the second virial coefficient is independent of the dimension and it always enhances the quantum exchange interaction. In $d$-dimensional spheres, however, the influence of the curvature enhances the quantum exchange interaction in two dimensions, but weakens it in higher dimensions ($d>3$).
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H ere we present a simple chemical network in which the selection of states is driven by the thermodynamic necessity of dissipating heat as rapidly as possible in the presence of a thermal gradient: states participating to faster reactions contribute the most to the dissipation rate, and are the most populated ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as the complexity of the chemical network increases, the textit{velocity} of the reaction path leading to a given state determines its selection, giving rise to non-trivial localization phenomena in state space. A byproduct of our studies is that, in the presence of a temperature gradient, thermophoresis-like behavior inevitably appears depending on the transport properties of each individual state, thus hinting at a possible microscopic explanation of this intriguing yet still not fully understood phenomenon.
61 - N. Clisby , B. M. McCoy 2003
We study the virial coefficients B_k of hard spheres in D dimensions by means of Monte-Carlo integration. We find that B_5 is positive in all dimensions but that B_6 is negative for all D >= 6. For 7<=k<=17 we compute sets of Ree-Hoover diagrams and find that either for large D or large k the dominant diagrams are loose packed. We use these results to study the radius of convergence and the validity of the many approximations used for the equations of state for hard spheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا