ﻻ يوجد ملخص باللغة العربية
Reaction currents in chemical networks usually increase when increasing their driving affinities. But far from equilibrium the opposite can also happen. We find that such negative differential response (NDR) occurs in reaction schemes of major biological relevance, namely, substrate inhibition and autocatalysis. We do so by deriving the full counting statistics of two minimal representative models using large deviation methods. We argue that NDR implies the existence of optimal affinities that maximize the robustness against environmental and intrinsic noise at intermediate values of dissipation. An analogous behavior is found in dissipative self-assembly, for which we identify the optimal working conditions set by NDR.
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one
Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal d
We study the mobility and the diffusion coefficient of an inertial tracer advected by a two-dimensional incompressible laminar flow, in the presence of thermal noise and under the action of an external force. We show, with extensive numerical simulat
We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of th
Genetically identical cells under the same environmental conditions can show strong variations in protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical framework to address how variations in enzym