ﻻ يوجد ملخص باللغة العربية
With the advancements in computer technology, there is a rapid development of intelligent systems to understand the complex relationships in data to make predictions and classifications. Artificail Intelligence based framework is rapidly revolutionizing the healthcare industry. These intelligent systems are built with machine learning and deep learning based robust models for early diagnosis of diseases and demonstrates a promising supplementary diagnostic method for frontline clinical doctors and surgeons. Machine Learning and Deep Learning based systems can streamline and simplify the steps involved in diagnosis of diseases from clinical and image-based data, thus providing significant clinician support and workflow optimization. They mimic human cognition and are even capable of diagnosing diseases that cannot be diagnosed with human intelligence. This paper focuses on the survey of machine learning and deep learning applications in across 16 medical specialties, namely Dental medicine, Haematology, Surgery, Cardiology, Pulmonology, Orthopedics, Radiology, Oncology, General medicine, Psychiatry, Endocrinology, Neurology, Dermatology, Hepatology, Nephrology, Ophthalmology, and Drug discovery. In this paper along with the survey, we discuss the advancements of medical practices with these systems and also the impact of these systems on medical professionals.
The rapid increase in the percentage of chronic disease patients along with the recent pandemic pose immediate threats on healthcare expenditure and elevate causes of death. This calls for transforming healthcare systems away from one-on-one patient
Electricity is one of the mandatory commodities for mankind today. To address challenges and issues in the transmission of electricity through the traditional grid, the concepts of smart grids and demand response have been developed. In such systems,
The Bangla language is the seventh most spoken language, with 265 million native and non-native speakers worldwide. However, English is the predominant language for online resources and technical knowledge, journals, and documentation. Consequently,
Deep reinforcement learning (DRL) is an emerging methodology that is transforming the way many complicated transportation decision-making problems are tackled. Researchers have been increasingly turning to this powerful learning-based methodology to
Understanding the strengths and weaknesses of machine learning (ML) algorithms is crucial for determine their scope of application. Here, we introduce the DIverse and GENerative ML Benchmark (DIGEN) - a collection of synthetic datasets for comprehens