ترغب بنشر مسار تعليمي؟ اضغط هنا

Imbalanced Adversarial Training with Reweighting

90   0   0.0 ( 0 )
 نشر من قبل Wentao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial training has been empirically proven to be one of the most effective and reliable defense methods against adversarial attacks. However, almost all existing studies about adversarial training are focused on balanced datasets, where each class has an equal amount of training examples. Research on adversarial training with imbalanced training datasets is rather limited. As the initial effort to investigate this problem, we reveal the facts that adversarially trained models present two distinguished behaviors from naturally trained models in imbalanced datasets: (1) Compared to natural training, adversarially trained models can suffer much worse performance on under-represented classes, when the training dataset is extremely imbalanced. (2) Traditional reweighting strategies may lose efficacy to deal with the imbalance issue for adversarial training. For example, upweighting the under-represented classes will drastically hurt the models performance on well-represented classes, and as a result, finding an optimal reweighting value can be tremendously challenging. In this paper, to further understand our observations, we theoretically show that the poor data separability is one key reason causing this strong tension between under-represented and well-represented classes. Motivated by this finding, we propose Separable Reweighted Adversarial Training (SRAT) to facilitate adversarial training under imbalanced scenarios, by learning more separable features for different classes. Extensive experiments on various datasets verify the effectiveness of the proposed framework.

قيم البحث

اقرأ أيضاً

Instances-reweighted adversarial training (IRAT) can significantly boost the robustness of trained models, where data being less/more vulnerable to the given attack are assigned smaller/larger weights during training. However, when tested on attacks different from the given attack simulated in training, the robustness may drop significantly (e.g., even worse than no reweighting). In this paper, we study this problem and propose our solution--locally reweighted adversarial training (LRAT). The rationale behind IRAT is that we do not need to pay much attention to an instance that is already safe under the attack. We argue that the safeness should be attack-dependent, so that for the same instance, its weight can change given different attacks based on the same model. Thus, if the attack simulated in training is mis-specified, the weights of IRAT are misleading. To this end, LRAT pairs each instance with its adversarial variants and performs local reweighting inside each pair, while performing no global reweighting--the rationale is to fit the instance itself if it is immune to the attack, but not to skip the pair, in order to passively defend different attacks in future. Experiments show that LRAT works better than both IRAT (i.e., global reweighting) and the standard AT (i.e., no reweighting) when trained with an attack and tested on different attacks.
Adversarial training (AT) is one of the most effective strategies for promoting model robustness, whereas even the state-of-the-art adversarially trained models struggle to exceed 60% robust test accuracy on CIFAR-10 without additional data, which is far from practical. A natural way to break this accuracy bottleneck is to introduce a rejection option, where confidence is a commonly used certainty proxy. However, the vanilla confidence can overestimate the model certainty if the input is wrongly classified. To this end, we propose to use true confidence (T-Con) (i.e., predicted probability of the true class) as a certainty oracle, and learn to predict T-Con by rectifying confidence. We prove that under mild conditions, a rectified confidence (R-Con) rejector and a confidence rejector can be coupled to distinguish any wrongly classified input from correctly classified ones, even under adaptive attacks. We also quantify that training R-Con to be aligned with T-Con could be an easier task than learning robust classifiers. In our experiments, we evaluate our rectified rejection (RR) module on CIFAR-10, CIFAR-10-C, and CIFAR-100 under several attacks, and demonstrate that the RR module is well compatible with different AT frameworks on improving robustness, with little extra computation.
74 - Qizhou Wang , Feng Liu , Bo Han 2021
Reweighting adversarial data during training has been recently shown to improve adversarial robustness, where data closer to the current decision boundaries are regarded as more critical and given larger weights. However, existing methods measuring t he closeness are not very reliable: they are discrete and can take only a few values, and they are path-dependent, i.e., they may change given the same start and end points with different attack paths. In this paper, we propose three types of probabilistic margin (PM), which are continuous and path-independent, for measuring the aforementioned closeness and reweighting adversarial data. Specifically, a PM is defined as the difference between two estimated class-posterior probabilities, e.g., such the probability of the true label minus the probability of the most confusing label given some natural data. Though different PMs capture different geometric properties, all three PMs share a negative correlation with the vulnerability of data: data with larger/smaller PMs are safer/riskier and should have smaller/larger weights. Experiments demonstrate that PMs are reliable measurements and PM-based reweighting methods outperform state-of-the-art methods.
The vulnerabilities of deep neural networks against adversarial examples have become a significant concern for deploying these models in sensitive domains. Devising a definitive defense against such attacks is proven to be challenging, and the method s relying on detecting adversarial samples are only valid when the attacker is oblivious to the detection mechanism. In this paper we first present an adversarial example detection method that provides performance guarantee to norm constrained adversaries. The method is based on the idea of training adversarial robust subspace detectors using asymmetrical adversarial training (AAT). The novel AAT objective presents a minimax problem similar to that of GANs; it has the same convergence property, and consequently supports the learning of class conditional distributions. We first demonstrate that the minimax problem could be reasonably solved by PGD attack, and then use the learned class conditional generative models to define generative detection/classification models that are both robust and more interpretable. We provide comprehensive evaluations of the above methods, and demonstrate their competitive performances and compelling properties on adversarial detection and robust classification problems.
Adversarial training (AT) is one of the most effective defenses against adversarial attacks for deep learning models. In this work, we advocate incorporating the hypersphere embedding (HE) mechanism into the AT procedure by regularizing the features onto compact manifolds, which constitutes a lightweight yet effective module to blend in the strength of representation learning. Our extensive analyses reveal that AT and HE are well coupled to benefit the robustness of the adversarially trained models from several aspects. We validate the effectiveness and adaptability of HE by embedding it into the popular AT frameworks including PGD-AT, ALP, and TRADES, as well as the FreeAT and FastAT strategies. In the experiments, we evaluate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets, which verifies that integrating HE can consistently enhance the model robustness for each AT framework with little extra computation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا