ﻻ يوجد ملخص باللغة العربية
Adversarial training (AT) is one of the most effective strategies for promoting model robustness, whereas even the state-of-the-art adversarially trained models struggle to exceed 60% robust test accuracy on CIFAR-10 without additional data, which is far from practical. A natural way to break this accuracy bottleneck is to introduce a rejection option, where confidence is a commonly used certainty proxy. However, the vanilla confidence can overestimate the model certainty if the input is wrongly classified. To this end, we propose to use true confidence (T-Con) (i.e., predicted probability of the true class) as a certainty oracle, and learn to predict T-Con by rectifying confidence. We prove that under mild conditions, a rectified confidence (R-Con) rejector and a confidence rejector can be coupled to distinguish any wrongly classified input from correctly classified ones, even under adaptive attacks. We also quantify that training R-Con to be aligned with T-Con could be an easier task than learning robust classifiers. In our experiments, we evaluate our rectified rejection (RR) module on CIFAR-10, CIFAR-10-C, and CIFAR-100 under several attacks, and demonstrate that the RR module is well compatible with different AT frameworks on improving robustness, with little extra computation.
Adversarial training (AT) is one of the most effective defenses against adversarial attacks for deep learning models. In this work, we advocate incorporating the hypersphere embedding (HE) mechanism into the AT procedure by regularizing the features
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard
We propose a new ensemble method for detecting and classifying adversarial examples generated by state-of-the-art attacks, including DeepFool and C&W. Our method works by training the members of an ensemble to have low classification error on random
We present a framework to learn privacy-preserving encodings of images that inhibit inference of chosen private attributes, while allowing recovery of other desirable information. Rather than simply inhibiting a given fixed pre-trained estimator, our
Adversarial training has been shown as an effective approach to improve the robustness of image classifiers against white-box attacks. However, its effectiveness against black-box attacks is more nuanced. In this work, we demonstrate that some geomet