ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Reweighting for Adversarial Training

94   0   0.0 ( 0 )
 نشر من قبل Ruize Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Instances-reweighted adversarial training (IRAT) can significantly boost the robustness of trained models, where data being less/more vulnerable to the given attack are assigned smaller/larger weights during training. However, when tested on attacks different from the given attack simulated in training, the robustness may drop significantly (e.g., even worse than no reweighting). In this paper, we study this problem and propose our solution--locally reweighted adversarial training (LRAT). The rationale behind IRAT is that we do not need to pay much attention to an instance that is already safe under the attack. We argue that the safeness should be attack-dependent, so that for the same instance, its weight can change given different attacks based on the same model. Thus, if the attack simulated in training is mis-specified, the weights of IRAT are misleading. To this end, LRAT pairs each instance with its adversarial variants and performs local reweighting inside each pair, while performing no global reweighting--the rationale is to fit the instance itself if it is immune to the attack, but not to skip the pair, in order to passively defend different attacks in future. Experiments show that LRAT works better than both IRAT (i.e., global reweighting) and the standard AT (i.e., no reweighting) when trained with an attack and tested on different attacks.

قيم البحث

اقرأ أيضاً

Adversarial training has been empirically proven to be one of the most effective and reliable defense methods against adversarial attacks. However, almost all existing studies about adversarial training are focused on balanced datasets, where each cl ass has an equal amount of training examples. Research on adversarial training with imbalanced training datasets is rather limited. As the initial effort to investigate this problem, we reveal the facts that adversarially trained models present two distinguished behaviors from naturally trained models in imbalanced datasets: (1) Compared to natural training, adversarially trained models can suffer much worse performance on under-represented classes, when the training dataset is extremely imbalanced. (2) Traditional reweighting strategies may lose efficacy to deal with the imbalance issue for adversarial training. For example, upweighting the under-represented classes will drastically hurt the models performance on well-represented classes, and as a result, finding an optimal reweighting value can be tremendously challenging. In this paper, to further understand our observations, we theoretically show that the poor data separability is one key reason causing this strong tension between under-represented and well-represented classes. Motivated by this finding, we propose Separable Reweighted Adversarial Training (SRAT) to facilitate adversarial training under imbalanced scenarios, by learning more separable features for different classes. Extensive experiments on various datasets verify the effectiveness of the proposed framework.
74 - Qizhou Wang , Feng Liu , Bo Han 2021
Reweighting adversarial data during training has been recently shown to improve adversarial robustness, where data closer to the current decision boundaries are regarded as more critical and given larger weights. However, existing methods measuring t he closeness are not very reliable: they are discrete and can take only a few values, and they are path-dependent, i.e., they may change given the same start and end points with different attack paths. In this paper, we propose three types of probabilistic margin (PM), which are continuous and path-independent, for measuring the aforementioned closeness and reweighting adversarial data. Specifically, a PM is defined as the difference between two estimated class-posterior probabilities, e.g., such the probability of the true label minus the probability of the most confusing label given some natural data. Though different PMs capture different geometric properties, all three PMs share a negative correlation with the vulnerability of data: data with larger/smaller PMs are safer/riskier and should have smaller/larger weights. Experiments demonstrate that PMs are reliable measurements and PM-based reweighting methods outperform state-of-the-art methods.
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters. Our free adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.
289 - Tao Bai , Jinqi Luo , Jun Zhao 2021
Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the las t few years, adversarial training has been studied and discussed from various aspects. A variety of improvements and developments of adversarial training are proposed, which were, however, neglected in existing surveys. For the first time in this survey, we systematically review the recent progress on adversarial training for adversarial robustness with a novel taxonomy. Then we discuss the generalization problems in adversarial training from three perspectives. Finally, we highlight the challenges which are not fully tackled and present potential future directions.
It is commonly believed that networks cannot be both accurate and robust, that gaining robustness means losing accuracy. It is also generally believed that, unless making networks larger, network architectural elements would otherwise matter little i n improving adversarial robustness. Here we present evidence to challenge these common beliefs by a careful study about adversarial training. Our key observation is that the widely-used ReLU activation function significantly weakens adversarial training due to its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which we replace ReLU with its smooth approximations to strengthen adversarial training. The purpose of smooth activation functions in SAT is to allow it to find harder adversarial examples and compute better gradient updates during adversarial training. Compared to standard adversarial training, SAT improves adversarial robustness for free, i.e., no drop in accuracy and no increase in computational cost. For example, without introducing additional computations, SAT significantly enhances ResNet-50s robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet. SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2% accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9.5% for accuracy and 11.6% for robustness. Models are available at https://github.com/cihangxie/SmoothAdversarialTraining.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا