ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate

79   0   0.0 ( 0 )
 نشر من قبل Xiaofeng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose an adversarial unsupervised domain adaptation (UDA) approach with the inherent conditional and label shifts, in which we aim to align the distributions w.r.t. both $p(x|y)$ and $p(y)$. Since the label is inaccessible in the target domain, the conventional adversarial UDA assumes $p(y)$ is invariant across domains, and relies on aligning $p(x)$ as an alternative to the $p(x|y)$ alignment. To address this, we provide a thorough theoretical and empirical analysis of the conventional adversarial UDA methods under both conditional and label shifts, and propose a novel and practical alternative optimization scheme for adversarial UDA. Specifically, we infer the marginal $p(y)$ and align $p(x|y)$ iteratively in the training, and precisely align the posterior $p(y|x)$ in testing. Our experimental results demonstrate its effectiveness on both classification and segmentation UDA, and partial UDA.



قيم البحث

اقرأ أيضاً

135 - Xiaofeng Liu , Site Li , Yubin Ge 2021
The unsupervised domain adaptation (UDA) has been widely adopted to alleviate the data scalability issue, while the existing works usually focus on classifying independently discrete labels. However, in many tasks (e.g., medical diagnosis), the label s are discrete and successively distributed. The UDA for ordinal classification requires inducing non-trivial ordinal distribution prior to the latent space. Target for this, the partially ordered set (poset) is defined for constraining the latent vector. Instead of the typically i.i.d. Gaussian latent prior, in this work, a recursively conditional Gaussian (RCG) set is adapted for ordered constraint modeling, which admits a tractable joint distribution prior. Furthermore, we are able to control the density of content vector that violates the poset constraints by a simple three-sigma rule. We explicitly disentangle the cross-domain images into a shared ordinal prior induced ordinal content space and two separate source/target ordinal-unrelated spaces, and the self-training is worked on the shared space exclusively for ordinal-aware domain alignment. Extensive experiments on UDA medical diagnoses and facial age estimation demonstrate its effectiveness.
199 - Rui Wang , Zuxuan Wu , Zejia Weng 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance s across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Domain adaptation is widely used in learning problems lacking labels. Recent studies show that deep adversarial domain adaptation models can make markable improvements in performance, which include symmetric and asymmetric architectures. However, the former has poor generalization ability whereas the latter is very hard to train. In this paper, we propose a novel adversarial domain adaptation method named Adversarial Residual Transform Networks (ARTNs) to improve the generalization ability, which directly transforms the source features into the space of target features. In this model, residual connections are used to share features and adversarial loss is reconstructed, thus making the model more generalized and easier to train. Moreover, a special regularization term is added to the loss function to alleviate a vanishing gradient problem, which enables its training process stable. A series of experiments based on Amazon review dataset, digits datasets and Office-31 image datasets are conducted to show that the proposed ARTN can be comparable with the methods of the state-of-the-art.
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain. Recently, adversarial domain adaptation with two distinct classifiers (bi-classifier) has been introduced i nto UDA which is effective to align distributions between different domains. Previous bi-classifier adversarial learning methods only focus on the similarity between the outputs of two distinct classifiers. However, the similarity of the outputs cannot guarantee the accuracy of target samples, i.e., target samples may match to wrong categories even if the discrepancy between two classifiers is small. To challenge this issue, in this paper, we propose a cross-domain gradient discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples. Specifically, the gradient gives a cue for the semantic information of target samples so it can be used as a good supervision to improve the accuracy of target samples. In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning. Extensive experiments on three widely used UDA datasets show that our method surpasses many previous state-of-the-arts. Codes are available at https://github.com/lijin118/CGDM.
Unsupervised domain adaptation (UDA) enables a learning machine to adapt from a labeled source domain to an unlabeled domain under the distribution shift. Thanks to the strong representation ability of deep neural networks, recent remarkable achievem ents in UDA resort to learning domain-invariant features. Intuitively, the hope is that a good feature representation, together with the hypothesis learned from the source domain, can generalize well to the target domain. However, the learning processes of domain-invariant features and source hypothesis inevitably involve domain-specific information that would degrade the generalizability of UDA models on the target domain. In this paper, motivated by the lottery ticket hypothesis that only partial parameters are essential for generalization, we find that only partial parameters are essential for learning domain-invariant information and generalizing well in UDA. Such parameters are termed transferable parameters. In contrast, the other parameters tend to fit domain-specific details and often fail to generalize, which we term as untransferable parameters. Driven by this insight, we propose Transferable Parameter Learning (TransPar) to reduce the side effect brought by domain-specific information in the learning process and thus enhance the memorization of domain-invariant information. Specifically, according to the distribution discrepancy degree, we divide all parameters into transferable and untransferable ones in each training iteration. We then perform separate updates rules for the two types of parameters. Extensive experiments on image classification and regression tasks (keypoint detection) show that TransPar outperforms prior arts by non-trivial margins. Moreover, experiments demonstrate that TransPar can be integrated into the most popular deep UDA networks and be easily extended to handle any data distribution shift scenarios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا