ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Domain Adaptation with Adversarial Residual Transform Networks

83   0   0.0 ( 0 )
 نشر من قبل Guanyu Cai
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain adaptation is widely used in learning problems lacking labels. Recent studies show that deep adversarial domain adaptation models can make markable improvements in performance, which include symmetric and asymmetric architectures. However, the former has poor generalization ability whereas the latter is very hard to train. In this paper, we propose a novel adversarial domain adaptation method named Adversarial Residual Transform Networks (ARTNs) to improve the generalization ability, which directly transforms the source features into the space of target features. In this model, residual connections are used to share features and adversarial loss is reconstructed, thus making the model more generalized and easier to train. Moreover, a special regularization term is added to the loss function to alleviate a vanishing gradient problem, which enables its training process stable. A series of experiments based on Amazon review dataset, digits datasets and Office-31 image datasets are conducted to show that the proposed ARTN can be comparable with the methods of the state-of-the-art.

قيم البحث

اقرأ أيضاً

Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortun ately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We s how that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary.
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
256 - Yawei Luo , Ping Liu , Tao Guan 2020
We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more chall enging, in which conventional adaptation approaches are prone to failure due to the scarce of unlabeled target data. To this end, we propose a novel Adversarial Style Mining approach, which combines the style transfer module and task-specific module into an adversarial manner. Specifically, the style transfer module iteratively searches for harder stylized images around the one-shot target sample according to the current learning state, leading the task model to explore the potential styles that are difficult to solve in the almost unseen target domain, thus boosting the adaptation performance in a data-scarce scenario. The adversarial learning framework makes the style transfer module and task-specific module benefit each other during the competition. Extensive experiments on both cross-domain classification and segmentation benchmarks verify that ASM achieves state-of-the-art adaptation performance under the challenging one-shot setting.
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr oving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا