ﻻ يوجد ملخص باللغة العربية
Co-creative Procedural Content Generation via Machine Learning (PCGML) refers to systems where a PCGML agent and a human work together to produce output content. One of the limitations of co-creative PCGML is that it requires co-creative training data for a PCGML agent to learn to interact with humans. However, acquiring this data is a difficult and time-consuming process. In this work, we propose approximating human-AI interaction data and employing transfer learning to adapt learned co-creative knowledge from one game to a different game. We explore this approach for co-creative Zelda dungeon room generation.
Sketching or doodling is a popular creative activity that people engage in. However, most existing work in automatic sketch understanding or generation has focused on sketches that are quite mundane. In this work, we introduce two datasets of creativ
In recent years, machine learning (ML) systems have been increasingly applied for performing creative tasks. Such creative ML approaches have seen wide use in the domains of visual art and music for applications such as image and music generation and
Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between task
Variational autoencoders (VAEs) have been used in prior works for generating and blending levels from different games. To add controllability to these models, conditional VAEs (CVAEs) were recently shown capable of generating output that can be modif
This paper demonstrates how Dropout can be used in Generative Adversarial Networks to generate multiple different outputs to one input. This method is thought as an alternative to latent space exploration, especially if constraints in the input should be preserved, like in A-to-B translation tasks.