ترغب بنشر مسار تعليمي؟ اضغط هنا

Dungeon and Platformer Level Blending and Generation using Conditional VAEs

73   0   0.0 ( 0 )
 نشر من قبل Anurag Sarkar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Variational autoencoders (VAEs) have been used in prior works for generating and blending levels from different games. To add controllability to these models, conditional VAEs (CVAEs) were recently shown capable of generating output that can be modified using labels specifying desired content, albeit working with segments of levels and platformers exclusively. We expand these works by using CVAEs for generating whole platformer and dungeon levels, and blending levels across these genres. We show that CVAEs can reliably control door placement in dungeons and progression direction in platformer levels. Thus, by using appropriate labels, our approach can generate whole dungeons and platformer levels of interconnected rooms and segments respectively as well as levels that blend dungeons and platformers. We demonstrate our approach using The Legend of Zelda, Metroid, Mega Man and Lode Runner.

قيم البحث

اقرأ أيضاً

Prior research has shown variational autoencoders (VAEs) to be useful for generating and blending game levels by learning latent representations of existing level data. We build on such models by exploring the level design affordances and application s enabled by conditional VAEs (CVAEs). CVAEs augment VAEs by allowing them to be trained using labeled data, thus enabling outputs to be generated conditioned on some input. We studied how increased control in the level generation process and the ability to produce desired outputs via training on labeled game level data could build on prior PCGML methods. Through our results of training CVAEs on levels from Super Mario Bros., Kid Icarus and Mega Man, we show that such models can assist in level design by generating levels with desired level elements and patterns as well as producing blended levels with desired combinations of games.
Variational autoencoders (VAEs) have been shown to be able to generate game levels but require manual exploration of the learned latent space to generate outputs with desired attributes. While conditional VAEs address this by allowing generation to b e conditioned on labels, such labels have to be provided during training and thus require prior knowledge which may not always be available. In this paper, we apply Gaussian Mixture VAEs (GMVAEs), a variant of the VAE which imposes a mixture of Gaussians (GM) on the latent space, unlike regular VAEs which impose a unimodal Gaussian. This allows GMVAEs to cluster levels in an unsupervised manner using the components of the GM and then generate new levels using the learned components. We demonstrate our approach with levels from Super Mario Bros., Kid Icarus and Mega Man. Our results show that the learned components discover and cluster level structures and patterns and can be used to generate levels with desired characteristics.
100 - Anurag Sarkar , Seth Cooper 2020
Existing methods of level generation using latent variable models such as VAEs and GANs do so in segments and produce the final level by stitching these separately generated segments together. In this paper, we build on these methods by training VAEs to learn a sequential model of segment generation such that generated segments logically follow from prior segments. By further combining the VAE with a classifier that determines whether to place the generated segment to the top, bottom, left or right of the previous segment, we obtain a pipeline that enables the generation of arbitrarily long levels that progress in any of these four directions and are composed of segments that logically follow one another. In addition to generating more coherent levels of non-fixed length, this method also enables implicit blending of levels from separate games that do not have similar orientation. We demonstrate our approach using levels from Super Mario Bros., Kid Icarus and Mega Man, showing that our method produces levels that are more coherent than previous latent variable-based approaches and are capable of blending levels across games.
Previous work explored blending levels from existing games to create levels for a new game that mixes properties of the original games. In this paper, we use Variational Autoencoders (VAEs) for improving upon such techniques. VAEs are artificial neur al networks that learn and use latent representations of datasets to generate novel outputs. We train a VAE on level data from Super Mario Bros. and Kid Icarus, enabling it to capture the latent space spanning both games. We then use this space to generate level segments that combine properties of levels from both games. Moreover, by applying evolutionary search in the latent space, we evolve level segments satisfying specific constraints. We argue that these affordances make the VAE-based approach especially suitable for co-creative level design and compare its performance with similar generative models like the GAN and the VAE-GAN.
Procedural content generation via machine learning (PCGML) has demonstrated its usefulness as a content and game creation approach, and has been shown to be able to support human creativity. An important facet of creativity is combinational creativit y or the recombination, adaptation, and reuse of ideas and concepts between and across domains. In this paper, we present a PCGML approach for level generation that is able to recombine, adapt, and reuse structural patterns from several domains to approximate unseen domains. We extend prior work involving example-driven Binary Space Partitioning for recombining and reusing patterns in multiple domains, and incorporate Variational Autoencoders (VAEs) for generating unseen structures. We evaluate our approach by blending across $7$ domains and subsets of those domains. We show that our approach is able to blend domains together while retaining structural components. Additionally, by using different groups of training domains our approach is able to generate both 1) levels that reproduce and capture features of a target domain, and 2) levels that have vastly different properties from the input domain.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا