ﻻ يوجد ملخص باللغة العربية
This paper demonstrates how Dropout can be used in Generative Adversarial Networks to generate multiple different outputs to one input. This method is thought as an alternative to latent space exploration, especially if constraints in the input should be preserved, like in A-to-B translation tasks.
Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout t
The training phases of Deep neural network~(DNN) consumes enormous processing time and energy. Compression techniques utilizing the sparsity of DNNs can effectively accelerate the inference phase of DNNs. However, it can be hardly used in the trainin
Co-creative Procedural Content Generation via Machine Learning (PCGML) refers to systems where a PCGML agent and a human work together to produce output content. One of the limitations of co-creative PCGML is that it requires co-creative training dat
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structur
Dropout has proven to be an effective technique for regularization and preventing the co-adaptation of neurons in deep neural networks (DNN). It randomly drops units with a probability $p$ during the training stage of DNN. Dropout also provides a way