ﻻ يوجد ملخص باللغة العربية
Vortex crystals are geometric arrays of vortices found in various physics fields, owing their regular internal structure to mutual interactions within a spatially confined system. In optics, vortex crystals may form spontaneously within a nonlinear resonator but their usefulness is limited by the lack of control over their topology. On the other hand, programmable devices used in free space, like spatial light modulators, allow the design of nearly arbitrary vortex distributions but without any intrinsic dynamics. By combining non-Hermitian optics with on-demand topological transformations enabled by metasurfaces, we report a solid-state laser that generates vortex crystals with mutual interactions and actively-tunable topologies. We demonstrate 10x10 coherent vortex arrays with nonlocal coupling networks that are not limited to nearest-neighbor coupling but rather dictated by the crystals topology. The vortex crystals exhibit sharp Bragg diffraction peaks, witnessing their coherence and high topological charge purity, which we resolve spatially over the whole lattice by introducing a parallelized analysis technique. By structuring light at the source, we enable complex transformations that allow to arbitrarily partition the orbital angular momentum inside the cavity and to heal topological charge defects, making these resonators a robust and versatile tool for advanced applications in topological optics.
Rankine vortex charateristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature
We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatic
Electromagnetic plane waves, solutions to Maxwells equations, are said to be `transverse in vacuum. Namely, the waves oscillatory electric and magnetic fields are confined within a plane transverse to the waves propagation direction. Under tight-focu
Far-field slit-diffraction of circular optical-vortex (OV) beams is efficient for measurement of the topological charge (TC) magnitude but does not reveal its sign. We show that this is because in the common diffraction schemes the diffraction plane
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polar