ﻻ يوجد ملخص باللغة العربية
Far-field slit-diffraction of circular optical-vortex (OV) beams is efficient for measurement of the topological charge (TC) magnitude but does not reveal its sign. We show that this is because in the common diffraction schemes the diffraction plane coincides with the incident OV waist plane. With explicit involvement of the incident beam spherical wavefront and based on the examples of Laguerre-Gaussian modes we show that the far-field profile possesses an asymmetry depending on the wavefront curvature and the TC sign. These features enable simple and efficient ways for the simultaneous diagnostics of the TC magnitude and sign, which can be useful in many OV applications, including the OV-assisted metrology and information processing.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polar
Optical trapping and manipulation using laser beams play a key role in many areas including biology, atomic science, and nanofabrication. Here, we propose and experimentally demonstrate the first use of a vortex-pair beam in optical trapping and mani
Converting spin angular momentum to orbital angular momentum has been shown to be a practical and efficient method for generating optical beams carrying orbital angular momentum and possessing a space-varying polarized field. Here, we present novel l
We discuss the analytic presentations of the high-order correlation functions in the N-slit diffraction with thermal light in a recent paper [Phys. Rev. Lett. 109, 233603 (2012)]. Our analysis shows that the superresolving fringes in the high-order c
Raised above the substrate and elastically deformed areas of graphene in the form of bubbles are found on different substrates. They come in a variety of shapes, including those which allow strong modification of the electronic properties of graphene