ﻻ يوجد ملخص باللغة العربية
We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatically enhance the field coupling leading to the stabilization of the vortex beam when the amplitude of the second beam exceeds some threshold value. We develop a variational approach to describe this effect analytically.
In uniaxial soft matter with a reorientational nonlinearity, such as nematic liquid crystals, a light beam in the extraordinary polarization walks off its wavevector due to birefringence, while it undergoes self-focusing via an increase in refractive
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu
We predict the existence of spatial-spectral vortex solitons in one-dimensional periodic waveguide arrays with quadratic nonlinear response. In such vortices the energy flow forms a closed loop through the simultaneous effects of phase gradients at t
We investigate a number of complex patterns driven by the electro-convection instability in a planarly aligned layer of a nematic liquid crystal. They are traced back to various secondary instabilities of the ideal roll patterns bifurcating at onset