ﻻ يوجد ملخص باللغة العربية
Scheduled sampling is an effective method to alleviate the exposure bias problem of neural machine translation. It simulates the inference scene by randomly replacing ground-truth target input tokens with predicted ones during training. Despite its success, its critical schedule strategies are merely based on training steps, ignoring the real-time model competence, which limits its potential performance and convergence speed. To address this issue, we propose confidence-aware scheduled sampling. Specifically, we quantify real-time model competence by the confidence of model predictions, based on which we design fine-grained schedule strategies. In this way, the model is exactly exposed to predicted tokens for high-confidence positions and still ground-truth tokens for low-confidence positions. Moreover, we observe vanilla scheduled sampling suffers from degenerating into the original teacher forcing mode since most predicted tokens are the same as ground-truth tokens. Therefore, under the above confidence-aware strategy, we further expose more noisy tokens (e.g., wordy and incorrect word order) instead of predicted ones for high-confidence token positions. We evaluate our approach on the Transformer and conduct experiments on large-scale WMT 2014 English-German, WMT 2014 English-French, and WMT 2019 Chinese-English. Results show that our approach significantly outperforms the Transformer and vanilla scheduled sampling on both translation quality and convergence speed.
Scheduled sampling is widely used to mitigate the exposure bias problem for neural machine translation. Its core motivation is to simulate the inference scene during training by replacing ground-truth tokens with predicted tokens, thus bridging the g
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only obs
Despite some empirical success at correcting exposure bias in machine translation, scheduled sampling algorithms suffer from a major drawback: they incorrectly assume that words in the reference translations and in sampled sequences are aligned at ea
Self-training has proven effective for improving NMT performance by augmenting model training with synthetic parallel data. The common practice is to construct synthetic data based on a randomly sampled subset of large-scale monolingual data, which w
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in