ﻻ يوجد ملخص باللغة العربية
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the models uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only obs
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose
Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper, we propose two simple search based c
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-tra
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag