ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiable Sampling with Flexible Reference Word Order for Neural Machine Translation

322   0   0.0 ( 0 )
 نشر من قبل Weijia Xu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite some empirical success at correcting exposure bias in machine translation, scheduled sampling algorithms suffer from a major drawback: they incorrectly assume that words in the reference translations and in sampled sequences are aligned at each time step. Our new differentiable sampling algorithm addresses this issue by optimizing the probability that the reference can be aligned with the sampled output, based on a soft alignment predicted by the model itself. As a result, the output distribution at each time step is evaluated with respect to the whole predicted sequence. Experiments on IWSLT translation tasks show that our approach improves BLEU compared to maximum likelihood and scheduled sampling baselines. In addition, our approach is simpler to train with no need for sampling schedule and yields models that achieve larger improvements with smaller beam sizes.

قيم البحث

اقرأ أيضاً

Although neural machine translation (NMT) has advanced the state-of-the-art on various language pairs, the interpretability of NMT remains unsatisfactory. In this work, we propose to address this gap by focusing on understanding the input-output beha vior of NMT models. Specifically, we measure the word importance by attributing the NMT output to every input word through a gradient-based method. We validate the approach on a couple of perturbation operations, language pairs, and model architectures, demonstrating its superiority on identifying input words with higher influence on translation performance. Encouragingly, the calculated importance can serve as indicators of input words that are under-translated by NMT models. Furthermore, our analysis reveals that words of certain syntactic categories have higher importance while the categories vary across language pairs, which can inspire better design principles of NMT architectures for multi-lingual translation.
Scheduled sampling is an effective method to alleviate the exposure bias problem of neural machine translation. It simulates the inference scene by randomly replacing ground-truth target input tokens with predicted ones during training. Despite its s uccess, its critical schedule strategies are merely based on training steps, ignoring the real-time model competence, which limits its potential performance and convergence speed. To address this issue, we propose confidence-aware scheduled sampling. Specifically, we quantify real-time model competence by the confidence of model predictions, based on which we design fine-grained schedule strategies. In this way, the model is exactly exposed to predicted tokens for high-confidence positions and still ground-truth tokens for low-confidence positions. Moreover, we observe vanilla scheduled sampling suffers from degenerating into the original teacher forcing mode since most predicted tokens are the same as ground-truth tokens. Therefore, under the above confidence-aware strategy, we further expose more noisy tokens (e.g., wordy and incorrect word order) instead of predicted ones for high-confidence token positions. We evaluate our approach on the Transformer and conduct experiments on large-scale WMT 2014 English-German, WMT 2014 English-French, and WMT 2019 Chinese-English. Results show that our approach significantly outperforms the Transformer and vanilla scheduled sampling on both translation quality and convergence speed.
Despite their original goal to jointly learn to align and translate, Neural Machine Translation (NMT) models, especially Transformer, are often perceived as not learning interpretable word alignments. In this paper, we show that NMT models do learn i nterpretable word alignments, which could only be revealed with proper interpretation methods. We propose a series of such methods that are model-agnostic, are able to be applied either offline or online, and do not require parameter update or architectural change. We show that under the force decoding setup, the alignments induced by our interpretation method are of better quality than fast-align for some systems, and when performing free decoding, they agree well with the alignments induced by automatic alignment tools.
Word embedding is central to neural machine translation (NMT), which has attracted intensive research interest in recent years. In NMT, the source embedding plays the role of the entrance while the target embedding acts as the terminal. These layers occupy most of the model parameters for representation learning. Furthermore, they indirectly interface via a soft-attention mechanism, which makes them comparatively isolated. In this paper, we propose shared-private bilingual word embeddings, which give a closer relationship between the source and target embeddings, and which also reduce the number of model parameters. For similar source and target words, their embeddings tend to share a part of the features and they cooperatively learn these common representation units. Experiments on 5 language pairs belonging to 6 different language families and written in 5 different alphabets demonstrate that the proposed model provides a significant performance boost over the strong baselines with dramatically fewer model parameters.
Self-training has proven effective for improving NMT performance by augmenting model training with synthetic parallel data. The common practice is to construct synthetic data based on a randomly sampled subset of large-scale monolingual data, which w e empirically show is sub-optimal. In this work, we propose to improve the sampling procedure by selecting the most informative monolingual sentences to complement the parallel data. To this end, we compute the uncertainty of monolingual sentences using the bilingual dictionary extracted from the parallel data. Intuitively, monolingual sentences with lower uncertainty generally correspond to easy-to-translate patterns which may not provide additional gains. Accordingly, we design an uncertainty-based sampling strategy to efficiently exploit the monolingual data for self-training, in which monolingual sentences with higher uncertainty would be sampled with higher probability. Experimental results on large-scale WMT English$Rightarrow$German and English$Rightarrow$Chinese datasets demonstrate the effectiveness of the proposed approach. Extensive analyses suggest that emphasizing the learning on uncertain monolingual sentences by our approach does improve the translation quality of high-uncertainty sentences and also benefits the prediction of low-frequency words at the target side.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا