ﻻ يوجد ملخص باللغة العربية
In this paper we revisit the problem of computing robust controlled invariant sets for discrete-time linear systems. The key idea is that by considering controllers that exhibit eventually periodic behavior, we obtain a closed-form expression for an implicit representation of a robust controlled invariant set in the space of states and finite input sequences. Due to the derived closed-form expression, our method is suitable for high dimensional systems. Optionally, one obtains an explicit robust controlled invariant set by projecting the implicit representation to the original state space. The proposed method is complete in the absence of disturbances, with a weak completeness result established when disturbances are present. Moreover, we show that a specific controller choice yields a hierarchy of robust controlled invariant sets. To validate the proposed method, we present thorough case studies illustrating that in safety-critical scenarios the implicit representation suffices in place of the explicit invariant set.
This paper proposes a tractable family of remainder-form mixed-monotone decomposition functions that are useful for over-approximating the image set of nonlinear mappings in reachability and estimation problems. In particular, our approach applies to
This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a Lya
This paper is concerned with a bilinear control problem for enhancing convection-cooling via an incompressible velocity field. Both optimal open-loop control and closed-loop feedback control designs are addressed. First and second order optimality co
We develop a data-driven approach to the computation of a-posteriori feasibility certificates to the solution sets of variational inequalities affected by uncertainty. Specifically, we focus on instances of variational inequalities with a determinist
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th