ﻻ يوجد ملخص باللغة العربية
This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a Lyapunov function. Moreover, we present conditions for the existence of Lyapunov functions linked to the positively invariant set formulation we propose. Connections to fundamental results on estimates of the RA are presented and support the search of Lyapunov functions of a rational nature. We then restrict our attention to systems governed by polynomial vector fields and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each iteration.
This paper considers the problem of designing accelerated gradient-based algorithms for optimization and saddle-point problems. The class of objective functions is defined by a generalized sector condition. This class of functions contains strongly c
In this paper we revisit the problem of computing robust controlled invariant sets for discrete-time linear systems. The key idea is that by considering controllers that exhibit eventually periodic behavior, we obtain a closed-form expression for an
Stochastic uncertainties in complex dynamical systems lead to variability of system states, which can in turn degrade the closed-loop performance. This paper presents a stochastic model predictive control approach for a class of nonlinear systems wit
In this paper, we investigate geometric properties of monotone systems by studying their isostables and basins of attraction. Isostables are boundaries of specific forward-invariant sets defined by the so-called Koopman operator, which provides a lin
The Lyapunov rank of a proper cone $K$ in a finite dimensional real Hilbert space is defined as the dimension of the space of all Lyapunov-like transformations on $K$, or equivalently, the dimension of the Lie algebra of the automorphism group of $K$