ﻻ يوجد ملخص باللغة العربية
This paper proposes a tractable family of remainder-form mixed-monotone decomposition functions that are useful for over-approximating the image set of nonlinear mappings in reachability and estimation problems. In particular, our approach applies to a new class of nonsmooth nonlinear systems that we call either-sided locally Lipschitz (ELLC) systems, which we show to be a superset of locally Lipschitz continuous systems, thus expanding the set of systems that are formally known to be mixed-monotone. In addition, we derive lower and upper bounds for the over-approximation error and show that the lower bound is achievable with our proposed approach. Moreover, we develop a set inversion algorithm that along with the proposed decomposition functions, can be used for constrained reachability analysis and interval observer design for continuous and discrete-time systems with bounded noise.
In this paper we revisit the problem of computing robust controlled invariant sets for discrete-time linear systems. The key idea is that by considering controllers that exhibit eventually periodic behavior, we obtain a closed-form expression for an
We propose a framework to use Nesterovs accelerated method for constrained convex optimization problems. Our approach consists of first reformulating the original problem as an unconstrained optimization problem using a continuously differentiable ex
This paper treats an optimal scheduling problem of control nodes in networked systems. We newly introduce both the L0 and l0 constraints on control inputs to extract a time-varying small number of effective control nodes. As the cost function, we ado
This paper proposes a novel framework for resource-aware control design termed performance-barrier-based triggering. Given a feedback policy, along with a Lyapunov function certificate that guarantees its correctness, we examine the problem of design
Transmission line failures in power systems propagate and cascade non-locally. This well-known yet counter-intuitive feature makes it even more challenging to optimally and reliably operate these complex networks. In this work we present a comprehens