ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a bilinear control problem for enhancing convection-cooling via an incompressible velocity field. Both optimal open-loop control and closed-loop feedback control designs are addressed. First and second order optimality conditions for characterizing the optimal solution are discussed. In particular, the method of instantaneous control is applied to establish the feedback laws. Moreover, the construction of feedback laws is also investigated by directly utilizing the optimality system with appropriate numerical discretization schemes. Computationally, it is much easier to implement the closed-loop feedback control than the optimal open-loop control, as the latter requires to solve the state equations forward in time, coupled with the adjoint equations backward in time together with a nonlinear optimality condition. Rigorous analysis and numerical experiments are presented to demonstrate our ideas and validate the efficacy of the control designs.
This paper introduces a closed-loop frequency analysis tool for reset control systems. To begin with sufficient conditions for the existence of the steady-state response for a closed-loop system with a reset element and driven by periodic references
Resonant sensors determine a sensed parameter by measuring the resonance frequency of a resonator. For fast continuous sensing, it is desirable to operate resonant sensors in a closed-loop configuration, where a feedback loop ensures that the resonat
Recent research has shown that supervised learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of these neural network (NN) controllers is still not well underst
Stimulation of target neuronal populations using optogenetic techniques during specific sleep stages has begun to elucidate the mechanisms and effects of sleep. To conduct closed-loop optogenetic sleep studies in untethered animals, we designed a ful
We present a distributed antenna array supporting open-loop distributed beamforming at 1.5 GHz. Based on a scalable, high-accuracy internode ranging technique, we demonstrate open-loop beamforming experiments using three transmitting nodes. To suppor