ترغب بنشر مسار تعليمي؟ اضغط هنا

GuideBoot: Guided Bootstrap for Deep Contextual Bandits

287   0   0.0 ( 0 )
 نشر من قبل Feiyang Pan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The exploration/exploitation (E&E) dilemma lies at the core of interactive systems such as online advertising, for which contextual bandit algorithms have been proposed. Bayesian approaches provide guided exploration with principled uncertainty estimation, but the applicability is often limited due to over-simplified assumptions. Non-Bayesian bootstrap methods, on the other hand, can apply to complex problems by using deep reward models, but lacks clear guidance to the exploration behavior. It still remains largely unsolved to develop a practical method for complex deep contextual bandits. In this paper, we introduce Guided Bootstrap (GuideBoot for short), combining the best of both worlds. GuideBoot provides explicit guidance to the exploration behavior by training multiple models over both real samples and noisy samples with fake labels, where the noise is added according to the predictive uncertainty. The proposed method is efficient as it can make decisions on-the-fly by utilizing only one randomly chosen model, but is also effective as we show that it can be viewed as a non-Bayesian approximation of Thompson sampling. Moreover, we extend it to an online version that can learn solely from streaming data, which is favored in real applications. Extensive experiments on both synthetic task and large-scale advertising environments show that GuideBoot achieves significant improvements against previous state-of-the-art methods.



قيم البحث

اقرأ أيضاً

We study contextual bandits with ancillary constraints on resources, which are common in real-world applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that handles constrained resou rces other than time, and improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, e.g. Dudik et al. (UAI11)) and bandits with resource constraints (bandits with knapsacks, Badanidiyuru et al. (FOCS13)), and prove a regret guarantee with near-optimal statistical properties.
We consider the problem of learning to choose actions using contextual information when provided with limited feedback in the form of relative pairwise comparisons. We study this problem in the dueling-bandits framework of Yue et al. (2009), which we extend to incorporate context. Roughly, the learners goal is to find the best policy, or way of behaving, in some space of policies, although best is not always so clearly defined. Here, we propose a new and natural solution concept, rooted in game theory, called a von Neumann winner, a randomized policy that beats or ties every other policy. We show that this notion overcomes important limitations of existing solutions, particularly the Condorcet winner which has typically been used in the past, but which requires strong and often unrealistic assumptions. We then present three efficient algorithms for online learning in our setting, and for approximating a von Neumann winner from batch-like data. The first of these algorithms achieves particularly low regret, even when data is adversarial, although its time and space requirements are linear in the size of the policy space. The other two algorithms require time and space only logarithmic in the size of the policy space when provided access to an oracle for solving classification problems on the space.
We study fairness in linear bandit problems. Starting from the notion of meritocratic fairness introduced in Joseph et al. [2016], we carry out a more refined analysis of a more general problem, achieving better performance guarantees with fewer mode lling assumptions on the number and structure of available choices as well as the number selected. We also analyze the previously-unstudied question of fairness in infinite linear bandit problems, obtaining instance-dependent regret upper bounds as well as lower bounds demonstrating that this instance-dependence is necessary. The result is a framework for meritocratic fairness in an online linear setting that is substantially more powerful, general, and realistic than the current state of the art.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe rformance compared to the state-of-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studi

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا