ترغب بنشر مسار تعليمي؟ اضغط هنا

Contextual Dueling Bandits

221   0   0.0 ( 0 )
 نشر من قبل Masrour Zoghi
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of learning to choose actions using contextual information when provided with limited feedback in the form of relative pairwise comparisons. We study this problem in the dueling-bandits framework of Yue et al. (2009), which we extend to incorporate context. Roughly, the learners goal is to find the best policy, or way of behaving, in some space of policies, although best is not always so clearly defined. Here, we propose a new and natural solution concept, rooted in game theory, called a von Neumann winner, a randomized policy that beats or ties every other policy. We show that this notion overcomes important limitations of existing solutions, particularly the Condorcet winner which has typically been used in the past, but which requires strong and often unrealistic assumptions. We then present three efficient algorithms for online learning in our setting, and for approximating a von Neumann winner from batch-like data. The first of these algorithms achieves particularly low regret, even when data is adversarial, although its time and space requirements are linear in the size of the policy space. The other two algorithms require time and space only logarithmic in the size of the policy space when provided access to an oracle for solving classification problems on the space.



قيم البحث

اقرأ أيضاً

A version of the dueling bandit problem is addressed in which a Condorcet winner may not exist. Two algorithms are proposed that instead seek to minimize regret with respect to the Copeland winner, which, unlike the Condorcet winner, is guaranteed to exist. The first, Copeland Confidence Bound (CCB), is designed for small numbers of arms, while the second, Scalable Copeland Bandits (SCB), works better for large-scale problems. We provide theoretical results bounding the regret accumulated by CCB and SCB, both substantially improving existing results. Such existing results either offer bounds of the form $O(K log T)$ but require restrictive assumptions, or offer bounds of the form $O(K^2 log T)$ without requiring such assumptions. Our results offer the best of both worlds: $O(K log T)$ bounds without restrictive assumptions.
We introduce the dueling teams problem, a new online-learning setting in which the learner observes noisy comparisons of disjoint pairs of $k$-sized teams from a universe of $n$ players. The goal of the learner is to minimize the number of duels requ ired to identify, with high probability, a Condorcet winning team, i.e., a team which wins against any other disjoint team (with probability at least $1/2$). Noisy comparisons are linked to a total order on the teams. We formalize our model by building upon the dueling bandits setting (Yue et al.2012) and provide several algorithms, both for stochastic and deterministic settings. For the stochastic setting, we provide a reduction to the classical dueling bandits setting, yielding an algorithm that identifies a Condorcet winning team within $mathcal{O}((n + k log (k)) frac{max(loglog n, log k)}{Delta^2})$ duels, where $Delta$ is a gap parameter. For deterministic feedback, we additionally present a gap-independent algorithm that identifies a Condorcet winning team within $mathcal{O}(nklog(k)+k^5)$ duels.
We study contextual bandits with ancillary constraints on resources, which are common in real-world applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that handles constrained resou rces other than time, and improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, e.g. Dudik et al. (UAI11)) and bandits with resource constraints (bandits with knapsacks, Badanidiyuru et al. (FOCS13)), and prove a regret guarantee with near-optimal statistical properties.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
We consider a novel setting of zeroth order non-convex optimization, where in addition to querying the function value at a given point, we can also duel two points and get the point with the larger function value. We refer to this setting as optimiza tion with dueling-choice bandits since both direct queries and duels are available for optimization. We give the COMP-GP-UCB algorithm based on GP-UCB (Srinivas et al., 2009), where instead of directly querying the point with the maximum Upper Confidence Bound (UCB), we perform a constrained optimization and use comparisons to filter out suboptimal points. COMP-GP-UCB comes with theoretical guarantee of $O(frac{Phi}{sqrt{T}})$ on simple regret where $T$ is the number of direct queries and $Phi$ is an improved information gain corresponding to a comparison based constraint set that restricts the search space for the optimum. In contrast, in the direct query only setting, $Phi$ depends on the entire domain. Finally, we present experimental results to show the efficacy of our algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا