ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient proximal gradient algorithms for joint graphical lasso

142   0   0.0 ( 0 )
 نشر من قبل Jie Chen
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider learning an undirected graphical model from sparse data. While several efficient algorithms have been proposed for graphical lasso (GL), the alternating direction method of multipliers (ADMM) is the main approach taken concerning for joint graphical lasso (JGL). We propose proximal gradient procedures with and without a backtracking option for the JGL. These procedures are first-order and relatively simple, and the subproblems are solved efficiently in closed form. We further show the boundedness for the solution of the JGL problem and the iterations in the algorithms. The numerical results indicate that the proposed algorithms can achieve high accuracy and precision, and their efficiency is competitive with state-of-the-art algorithms.



قيم البحث

اقرأ أيضاً

This work studies a class of non-smooth decentralized multi-agent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common non-smooth term. We propose a general primal-dual algorithmic fr amework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact solution in the presence of the non-smooth term. Moreover, for the more general class of problems with agent specific non-smooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and non-smooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly-convex objectives and different local non-smooth terms.
62 - C. Herzet , A. Dremeau 2017
This paper focusses on safe screening techniques for the LASSO problem. Motivated by the need for low-complexity algorithms, we propose a new approach, dubbed joint screening test, allowing to screen a set of atoms by carrying out one single test. Th e approach is particularized to two different sets of atoms, respectively expressed as sphere and dome regions. After presenting the mathematical derivations of the tests, we elaborate on their relative effectiveness and discuss the practical use of such procedures.
The incremental aggregated gradient algorithm is popular in network optimization and machine learning research. However, the current convergence results require the objective function to be strongly convex. And the existing convergence rates are also limited to linear convergence. Due to the mathematical techniques, the stepsize in the algorithm is restricted by the strongly convex constant, which may make the stepsize be very small (the strongly convex constant may be small). In this paper, we propose a general proximal incremental aggregated gradient algorithm, which contains various existing algorithms including the basic incremental aggregated gradient method. Better and new convergence results are proved even with the general scheme. The novel results presented in this paper, which have not appeared in previous literature, include: a general scheme, nonconvex analysis, the sublinear convergence rates of the function values, much larger stepsizes that guarantee the convergence, the convergence when noise exists, the line search strategy of the proximal incremental aggregated gradient algorithm and its convergence.
Motivated by penalized likelihood maximization in complex models, we study optimization problems where neither the function to optimize nor its gradient have an explicit expression, but its gradient can be approximated by a Monte Carlo technique. We propose a new algorithm based on a stochastic approximation of the Proximal-Gradient (PG) algorithm. This new algorithm, named Stochastic Approximation PG (SAPG) is the combination of a stochastic gradient descent step which - roughly speaking - computes a smoothed approximation of the past gradient along the iterations, and a proximal step. The choice of the step size and the Monte Carlo batch size for the stochastic gradient descent step in SAPG are discussed. Our convergence results cover the cases of biased and unbiased Monte Carlo approximations. While the convergence analysis of the Monte Carlo-PG is already addressed in the literature (see Atchade et al. [2016]), the convergence analysis of SAPG is new. The two algorithms are compared on a linear mixed effect model as a toy example. A more challenging application is proposed on non-linear mixed effect models in high dimension with a pharmacokinetic data set including genomic covariates. To our best knowledge, our work provides the first convergence result of a numerical method designed to solve penalized Maximum Likelihood in a non-linear mixed effect model.
This paper introduces two simple techniques to improve off-policy Reinforcement Learning (RL) algorithms. First, we formulate off-policy RL as a stochastic proximal point iteration. The target network plays the role of the variable of optimization an d the value network computes the proximal operator. Second, we exploits the two value functions commonly employed in state-of-the-art off-policy algorithms to provide an improved action value estimate through bootstrapping with limited increase of computational resources. Further, we demonstrate significant performance improvement over state-of-the-art algorithms on standard continuous-control RL benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا