ﻻ يوجد ملخص باللغة العربية
This paper introduces two simple techniques to improve off-policy Reinforcement Learning (RL) algorithms. First, we formulate off-policy RL as a stochastic proximal point iteration. The target network plays the role of the variable of optimization and the value network computes the proximal operator. Second, we exploits the two value functions commonly employed in state-of-the-art off-policy algorithms to provide an improved action value estimate through bootstrapping with limited increase of computational resources. Further, we demonstrate significant performance improvement over state-of-the-art algorithms on standard continuous-control RL benchmarks.
Deterministic Policy Gradient (DPG) removes a level of randomness from standard randomized-action Policy Gradient (PG), and demonstrates substantial empirical success for tackling complex dynamic problems involving Markov decision processes. At the s
Credit assignment in Meta-reinforcement learning (Meta-RL) is still poorly understood. Existing methods either neglect credit assignment to pre-adaptation behavior or implement it naively. This leads to poor sample-efficiency during meta-training as
Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider
Deep Deterministic Policy Gradient (DDPG) has been proved to be a successful reinforcement learning (RL) algorithm for continuous control tasks. However, DDPG still suffers from data insufficiency and training inefficiency, especially in computationa
We introduce Phasic Policy Gradient (PPG), a reinforcement learning framework which modifies traditional on-policy actor-critic methods by separating policy and value function training into distinct phases. In prior methods, one must choose between u