ﻻ يوجد ملخص باللغة العربية
The incremental aggregated gradient algorithm is popular in network optimization and machine learning research. However, the current convergence results require the objective function to be strongly convex. And the existing convergence rates are also limited to linear convergence. Due to the mathematical techniques, the stepsize in the algorithm is restricted by the strongly convex constant, which may make the stepsize be very small (the strongly convex constant may be small). In this paper, we propose a general proximal incremental aggregated gradient algorithm, which contains various existing algorithms including the basic incremental aggregated gradient method. Better and new convergence results are proved even with the general scheme. The novel results presented in this paper, which have not appeared in previous literature, include: a general scheme, nonconvex analysis, the sublinear convergence rates of the function values, much larger stepsizes that guarantee the convergence, the convergence when noise exists, the line search strategy of the proximal incremental aggregated gradient algorithm and its convergence.
We study the training of regularized neural networks where the regularizer can be non-smooth and non-convex. We propose a unified framework for stochastic proximal gradient descent, which we term ProxGen, that allows for arbitrary positive preconditi
This work studies a class of non-smooth decentralized multi-agent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common non-smooth term. We propose a general primal-dual algorithmic fr
We consider learning an undirected graphical model from sparse data. While several efficient algorithms have been proposed for graphical lasso (GL), the alternating direction method of multipliers (ADMM) is the main approach taken concerning for join
Sparsity-inducing regularization problems are ubiquitous in machine learning applications, ranging from feature selection to model compression. In this paper, we present a novel stochastic method -- Orthant Based Proximal Stochastic Gradient Method (
Distributed descent-based methods are an essential toolset to solving optimization problems in multi-agent system scenarios. Here the agents seek to optimize a global objective function through mutual cooperation. Oftentimes, cooperation is achieved