ﻻ يوجد ملخص باللغة العربية
This paper focusses on safe screening techniques for the LASSO problem. Motivated by the need for low-complexity algorithms, we propose a new approach, dubbed joint screening test, allowing to screen a set of atoms by carrying out one single test. The approach is particularized to two different sets of atoms, respectively expressed as sphere and dome regions. After presenting the mathematical derivations of the tests, we elaborate on their relative effectiveness and discuss the practical use of such procedures.
Classical methods for psychometric function estimation either require excessive measurements or produce only a low-resolution approximation of the target psychometric function. In this paper, we propose a novel solution for rapid screening for a chan
We consider learning an undirected graphical model from sparse data. While several efficient algorithms have been proposed for graphical lasso (GL), the alternating direction method of multipliers (ADMM) is the main approach taken concerning for join
We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for
We propose a novel transfer learning approach for orphan screening called corresponding projections. In orphan screening the learning task is to predict the binding affinities of compounds to an orphan protein, i.e., one for which no training data is
Using the $ell_1$-norm to regularize the estimation of the parameter vector of a linear model leads to an unstable estimator when covariates are highly correlated. In this paper, we introduce a new penalty function which takes into account the correl