ﻻ يوجد ملخص باللغة العربية
A gradient-free deterministic method is developed to solve global optimization problems for Lipschitz continuous functions defined in arbitrary path-wise connected compact sets in Euclidean spaces. The method can be regarded as granular sieving with synchronous analysis in both the domain and range of the objective function. With straightforward mathematical formulation applicable to both univariate and multivariate objective functions, the global minimum value and all the global minimizers are located through two decreasing sequences of compact sets in, respectively, the domain and range spaces. The algorithm is easy to implement with moderate computational cost. The method is tested against extensive benchmark functions in the literature. The experimental results show remarkable effectiveness and applicability of the algorithm.
In this paper, a novel multiagent based state transition optimization algorithm with linear convergence rate named MASTA is constructed. It first generates an initial population randomly and uniformly. Then, it applies the basic state transition algo
We consider the zeroth-order optimization problem in the huge-scale setting, where the dimension of the problem is so large that performing even basic vector operations on the decision variables is infeasible. In this paper, we propose a novel algori
Sparse optimization is a central problem in machine learning and computer vision. However, this problem is inherently NP-hard and thus difficult to solve in general. Combinatorial search methods find the global optimal solution but are confined to sm
The paper proves convergence to global optima for a class of distributed algorithms for nonconvex optimization in network-based multi-agent settings. Agents are permitted to communicate over a time-varying undirected graph. Each agent is assumed to p
In this paper, the optimization problem of the supervised distance preserving projection (SDPP) for data dimension reduction (DR) is considered, which is equivalent to a rank constrained least squares semidefinite programming (RCLSSDP). In order to o