ﻻ يوجد ملخص باللغة العربية
In this paper, the optimization problem of the supervised distance preserving projection (SDPP) for data dimension reduction (DR) is considered, which is equivalent to a rank constrained least squares semidefinite programming (RCLSSDP). In order to overcome the difficulties caused by rank constraint, the difference-of-convex (DC) regularization strategy was employed, then the RCLSSDP is transferred into a series of least squares semidefinite programming with DC regularization (DCLSSDP). An inexact proximal DC algorithm with sieving strategy (s-iPDCA) is proposed for solving the DCLSSDP, whose subproblems are solved by the accelerated block coordinate descent (ABCD) method. Convergence analysis shows that the generated sequence of s-iPDCA globally converges to stationary points of the corresponding DC problem. To show the efficiency of our proposed algorithm for solving the RCLSSDP, the s-iPDCA is compared with classical proximal DC algorithm (PDCA) and the PDCA with extrapolation (PDCAe) by performing DR experiment on the COIL-20 database, the results show that the s-iPDCA outperforms the PDCA and the PDCAe in solving efficiency. Moreover, DR experiments for face recognition on the ORL database and the YaleB database demonstrate that the rank constrained kernel SDPP (RCKSDPP) is effective and competitive by comparing the recognition accuracy with kernel semidefinite SDPP (KSSDPP) and kernal principal component analysis (KPCA).
We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ
In this paper, we show that the bundle method can be applied to solve semidefinite programming problems with a low rank solution without ever constructing a full matrix. To accomplish this, we use recent results from randomly sketching matrix optimiz
Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specif
Semidefinite Programming (SDP) is a class of convex optimization programs with vast applications in control theory, quantum information, combinatorial optimization and operational research. Noisy intermediate-scale quantum (NISQ) algorithms aim to ma