ترغب بنشر مسار تعليمي؟ اضغط هنا

An inexact proximal DC algorithm with sieving strategy for rank constrained least squares semidefinite programming

68   0   0.0 ( 0 )
 نشر من قبل Xiaoliang Song
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the optimization problem of the supervised distance preserving projection (SDPP) for data dimension reduction (DR) is considered, which is equivalent to a rank constrained least squares semidefinite programming (RCLSSDP). In order to overcome the difficulties caused by rank constraint, the difference-of-convex (DC) regularization strategy was employed, then the RCLSSDP is transferred into a series of least squares semidefinite programming with DC regularization (DCLSSDP). An inexact proximal DC algorithm with sieving strategy (s-iPDCA) is proposed for solving the DCLSSDP, whose subproblems are solved by the accelerated block coordinate descent (ABCD) method. Convergence analysis shows that the generated sequence of s-iPDCA globally converges to stationary points of the corresponding DC problem. To show the efficiency of our proposed algorithm for solving the RCLSSDP, the s-iPDCA is compared with classical proximal DC algorithm (PDCA) and the PDCA with extrapolation (PDCAe) by performing DR experiment on the COIL-20 database, the results show that the s-iPDCA outperforms the PDCA and the PDCAe in solving efficiency. Moreover, DR experiments for face recognition on the ORL database and the YaleB database demonstrate that the rank constrained kernel SDPP (RCKSDPP) is effective and competitive by comparing the recognition accuracy with kernel semidefinite SDPP (KSSDPP) and kernal principal component analysis (KPCA).



قيم البحث

اقرأ أيضاً

We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these generally large-scale LP problems efficiently, we design an implementable inexact entropic proximal point algorithm (iEPPA) combined with an easy-to-implement dual block coordinate descent method as a subsolver. Unlike existing entropy-type proximal point algorithms, our iEPPA employs a more practically checkable stopping condition for solving the associated subproblems while achieving provable convergence. Moreover, when solving the capacity constrained multi-marginal optimal transport (CMOT) problem (a special case of our LP problem), our iEPPA is able to bypass the underlying numerical instability issues that often appear in the popular entropic regularization approach, since our algorithm does not require the proximal parameter to be very small in order to obtain an accurate approximate solution. Numerous numerical experiments show that our iEPPA is highly efficient and robust for solving large-scale CMOT problems, in comparison to the (stabilized) Dykstras algorithm and the commercial solver Gurobi. Moreover, the experiments on discrete tomography also highlight the potential modeling power of our model.
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ ence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $tilde O(varepsilon^{-5/2})$ to produce an $varepsilon$-stationary point under the Slaters condition. When the constraint functions are non-convex, the complexity becomes $tilde O(varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $tilde O(varepsilon^{-4})$ if a feasible initial solution is available.
In this paper, we show that the bundle method can be applied to solve semidefinite programming problems with a low rank solution without ever constructing a full matrix. To accomplish this, we use recent results from randomly sketching matrix optimiz ation problems and from the analysis of bundle methods. Under strong duality and strict complementarity of SDP, our algorithm produces primal and the dual sequences converging in feasibility at a rate of $tilde{O}(1/epsilon)$ and in optimality at a rate of $tilde{O}(1/epsilon^2)$. Moreover, our algorithm outputs a low rank representation of its approximate solution with distance to the optimal solution at most $O(sqrt{epsilon})$ within $tilde{O}(1/epsilon^2)$ iterations.
Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specif ically, given an SDP with $m$ constraint matrices, each of dimension $n$ and rank $r$, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time $O(mcdotmathrm{poly}(log n,r,1/varepsilon))$ given access to a sampling-based low-overhead data structure for the constraint matrices, where $varepsilon$ is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application. Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC 12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC 19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest: $bullet$ Weighted sampling: assuming sampling access to each individual constraint matrix $A_{1},ldots,A_{tau}$, we propose a procedure that gives a good approximation of $A=A_{1}+cdots+A_{tau}$. $bullet$ Symmetric approximation: we propose a sampling procedure that gives the emph{spectral decomposition} of a low-rank Hermitian matrix $A$. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.
Semidefinite Programming (SDP) is a class of convex optimization programs with vast applications in control theory, quantum information, combinatorial optimization and operational research. Noisy intermediate-scale quantum (NISQ) algorithms aim to ma ke an efficient use of the current generation of quantum hardware. However, optimizing variational quantum algorithms is a challenge as it is an NP-hard problem that in general requires an exponential time to solve and can contain many far from optimal local minima. Here, we present a current term NISQ algorithm for SDP. The classical optimization program of our NISQ solver is another SDP over a smaller dimensional ansatz space. We harness the SDP based formulation of the Hamiltonian ground state problem to design a NISQ eigensolver. Unlike variational quantum eigensolvers, the classical optimization program of our eigensolver is convex, can be solved in polynomial time with the number of ansatz parameters and every local minimum is a global minimum. Further, we demonstrate the potential of our NISQ SDP solver by finding the largest eigenvalue of up to $2^{1000}$ dimensional matrices and solving graph problems related to quantum contextuality. We also discuss NISQ algorithms for rank-constrained SDPs. Our work extends the application of NISQ computers onto one of the most successful algorithmic frameworks of the past few decades.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا