ﻻ يوجد ملخص باللغة العربية
We consider the zeroth-order optimization problem in the huge-scale setting, where the dimension of the problem is so large that performing even basic vector operations on the decision variables is infeasible. In this paper, we propose a novel algorithm, coined ZO-BCD, that exhibits favorable overall query complexity and has a much smaller per-iteration computational complexity. In addition, we discuss how the memory footprint of ZO-BCD can be reduced even further by the clever use of circulant measurement matrices. As an application of our new method, we propose the idea of crafting adversarial attacks on neural network based classifiers in a wavelet domain, which can result in problem dimensions of over 1.7 million. In particular, we show that crafting adversarial examples to audio classifiers in a wavelet domain can achieve the state-of-the-art attack success rate of 97.9%.
Block coordinate descent (BCD), also known as nonlinear Gauss-Seidel, is a simple iterative algorithm for nonconvex optimization that sequentially minimizes the objective function in each block coordinate while the other coordinates are held fixed. W
The method of block coordinate gradient descent (BCD) has been a powerful method for large-scale optimization. This paper considers the BCD method that successively updates a series of blocks selected according to a Markov chain. This kind of block s
This paper investigates how to accelerate the convergence of distributed optimization algorithms on nonconvex problems with zeroth-order information available only. We propose a zeroth-order (ZO) distributed primal-dual stochastic coordinates algorit
This paper proposes TriPD, a new primal-dual algorithm for minimizing the sum of a Lipschitz-differentiable convex function and two possibly nonsmooth convex functions, one of which is composed with a linear mapping. We devise a randomized block-coor
Zeroth-order optimization is an important research topic in machine learning. In recent years, it has become a key tool in black-box adversarial attack to neural network based image classifiers. However, existing zeroth-order optimization algorithms