ترغب بنشر مسار تعليمي؟ اضغط هنا

Prequential MDL for Causal Structure Learning with Neural Networks

72   0   0.0 ( 0 )
 نشر من قبل Jorg Bornschein
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning the structure of Bayesian networks and causal relationships from observations is a common goal in several areas of science and technology. We show that the prequential minimum description length principle (MDL) can be used to derive a practical scoring function for Bayesian networks when flexible and overparametrized neural networks are used to model the conditional probability distributions between observed variables. MDL represents an embodiment of Occams Razor and we obtain plausible and parsimonious graph structures without relying on sparsity inducing priors or other regularizers which must be tuned. Empirically we demonstrate competitive results on synthetic and real-world data. The score often recovers the correct structure even in the presence of strongly nonlinear relationships between variables; a scenario were prior approaches struggle and usually fail. Furthermore we discuss how the the prequential score relates to recent work that infers causal structure from the speed of adaptation when the observations come from a source undergoing distributional shift.

قيم البحث

اقرأ أيضاً

In recent years we see a rapidly growing line of research which shows learnability of various models via common neural network algorithms. Yet, besides a very few outliers, these results show learnability of models that can be learned using linear me thods. Namely, such results show that learning neural-networks with gradient-descent is competitive with learning a linear classifier on top of a data-independent representation of the examples. This leaves much to be desired, as neural networks are far more successful than linear methods. Furthermore, on the more conceptual level, linear models dont seem to capture the deepness of deep networks. In this paper we make a step towards showing leanability of models that are inherently non-linear. We show that under certain distributions, sparse parities are learnable via gradient decent on depth-two network. On the other hand, under the same distributions, these parities cannot be learned efficiently by linear methods.
While on some natural distributions, neural-networks are trained efficiently using gradient-based algorithms, it is known that learning them is computationally hard in the worst-case. To separate hard from easy to learn distributions, we observe the property of local correlation: correlation between local patterns of the input and the target label. We focus on learning deep neural-networks using a gradient-based algorithm, when the target function is a tree-structured Boolean circuit. We show that in this case, the existence of correlation between the gates of the circuit and the target label determines whether the optimization succeeds or fails. Using this result, we show that neural-networks can learn the (log n)-parity problem for most product distributions. These results hint that local correlation may play an important role in separating easy/hard to learn distributions. We also obtain a novel depth separation result, in which we show that a shallow network cannot express some functions, while there exists an efficient gradient-based algorithm that can learn the very same functions using a deep network. The negative expressivity result for shallow networks is obtained by a reduction from results in communication complexity, that may be of independent interest.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus ca usal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-s tructure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا