ﻻ يوجد ملخص باللغة العربية
In recent years we see a rapidly growing line of research which shows learnability of various models via common neural network algorithms. Yet, besides a very few outliers, these results show learnability of models that can be learned using linear methods. Namely, such results show that learning neural-networks with gradient-descent is competitive with learning a linear classifier on top of a data-independent representation of the examples. This leaves much to be desired, as neural networks are far more successful than linear methods. Furthermore, on the more conceptual level, linear models dont seem to capture the deepness of deep networks. In this paper we make a step towards showing leanability of models that are inherently non-linear. We show that under certain distributions, sparse parities are learnable via gradient decent on depth-two network. On the other hand, under the same distributions, these parities cannot be learned efficiently by linear methods.
While on some natural distributions, neural-networks are trained efficiently using gradient-based algorithms, it is known that learning them is computationally hard in the worst-case. To separate hard from easy to learn distributions, we observe the
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa
Estimating global pairwise interaction effects, i.e., the difference between the joint effect and the sum of marginal effects of two input features, with uncertainty properly quantified, is centrally important in science applications. We propose a no
Learning the structure of Bayesian networks and causal relationships from observations is a common goal in several areas of science and technology. We show that the prequential minimum description length principle (MDL) can be used to derive a practi
Neural network models and deep models are one of the leading and state of the art models in machine learning. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models req