ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation measurement by single spherical near-field intensity measurement for large reflector antenna

143   0   0.0 ( 0 )
 نشر من قبل Boyang Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a new method to obtain the deformation distribution on the main reflector of an antenna only by measuring the electric intensity on a spherical surface with the focal point as the center of the sphere, regardless of phase. Combining the differential geometry theory with geometric optics method, this paper has derived a deformation-intensity equation to relate the surface deformation to the intensity distribution of a spherical near-field directly. Based on the Finite difference method (FDM) and Gauss-Seidel iteration, deformation has been calculated from intensity simulated by GO and PO method, respectively, with relatively small errors, which prove the effectiveness of the equation proposed in this paper. By means of this method , it is possible to measure the deformation only by scanning the electric intensity of a single hemispherical near-field whose area is only about $1/15$ of the aperture. And the measurement only needs a plane wave at any frequency as the incident wave, which means that both the signals from the outer space satellite and the far-field artificial beacon could be used as the sources. The scanning can be realized no matter what attitude and elevation angle the antenna is in because the size and angle of the hemisphere are changeable.

قيم البحث

اقرأ أيضاً

Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) pe rformance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degradation of the system noise temperature. In addition, we carried out an astronomical observation of a well-known SiO maser source, R Cas, by using a metal mesh mirror on the NRO 45-m radio telescope Coude system. The metal mesh mirror considerably increases the system noise temperature and slightly decreases the peak antenna temperature. These results are consistent with laboratory measurements.
75 - Km Nitu Rai , Soumen Basak , 2021
Mass and radius measurements of stars are important inputs for models of stellar structure. Binary stars are of particular interest in this regard, because astrometry and spectroscopy of a binary together provide the masses of both stars as well as t he distance to the system, while interferometry can both improve the astrometry and measure the radii of the stars. In this work we simulate parameter recovery from intensity interferometry, especially the challenge of disentangling the radii of two stars from their combined interferometric signal. Two approaches are considered: separation of the visibility contributions of each star with the help of differing brightness ratios at different wavelengths, and direct fitting of the intensity correlation to a multi-parameter model. Full image reconstructions is not attempted. Measurement of angular radii, angular separation and first-order limb-darkening appears readily achievable for bright binary stars with current instrumentation.
Flux dependent non-linearity (reciprocity failure) in HgCdTe near infrared detectors can severely impact an instruments performance, in particular with respect to precision photometric measurements. The cause of this effect is presently not understoo d. To investigate reciprocity failure, a dedicated test system was built. For flux levels between 1 and 50,000 photons/s, a sensitivity to reciprocity failure of approximately 0.1%/decade was achieved. A wavelength independent non-linearity due to reciprocity failure of about 0.35%/decade was measured in a 1.7 micron HgCdTe detector.
91 - Adrian Sutinjo , Daniel Ung , 2018
We present two methods for measuring the noise temperature of a differential input single-ended output (DISO) Low-Noise Amplifier (LNA) connected to an antenna. The first method is direct measurement of the DISO LNA and antenna in an anechoic chamber at ambient temperature. The second is a simple and low-cost noise parameter extraction of the DISO device using a coaxial long cable. The reconstruction of the DISO noise parameter from the noise wave measurements of the DISO LNA with one terminated input port is discussed in detail. We successfully applied these methods to the Murchison Widefield Array LNA and antenna.
63 - Dudong Feng , Shannon K. Yee , 2021
Various spectral control techniques can be applied to improve the performance of a thermophotovoltaic (TPV) system. For example, a back surface reflector (BSR) can improve the performance of TPV systems. A conventional metal BSR structure enhances th e photogeneration rate by increasing the absorption probability of photons via back surface reflection, affording a second chance for absorption. However, surface passivation and external luminescence effects introduced by BSR structures have been previously ignored, which potentially decreases the performance of TPV systems. Recently, a back gapped reflector (BGR) structure was proposed to greatly improve the performance of far-field TPV systems by reducing reflection loss at the semiconductor-metal interface. In the present work, the performance improvement on a thin-film, near-field InAs TPV system with a BGR is investigated, comparing its performance to that with a conventional metal BSR. Surface passivation conditions are also investigated to further improve the performance of TPV systems with back reflectors. The output power and efficiency are calculated using an iterative model combining fluctuational electrodynamics and the full drift-diffusion model. For the well-passivated condition, when the BSR is replaced by the BGR, the calculated conversion efficiency was improved from 16.4% to 21% and the output power was increased by 10% for the near-field regime. Finally, the reflection loss and external luminescence loss are analyzed to explain the performance improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا